In this study, silver-tungsten oxide core–shell nanoparticles (Ag–WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag–WO3 core–shell NPs were subjected to characterization using UV–visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV–visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon resonance of Ag NPs and WO3 NPs, respectively. The absorbance values of the Ag–WO3 core–shell NPs increased as the core concentrations rose, while the band gap decreased by 2.73–2.5 eV, The (PL) results exhibited prominent peaks with a central wavelength of 456, 458, 458, 464, and 466 nm. Additionally, the PL intensity of the Ag–WO3-NP samples increased proportionally with the concentration of the core. Furthermore, the redshift seen at the peak of the PL emission band may be attributed to the quantum confinement effect. EDX analysis can verify the creation process of the Ag–WO3 core–shell nanostructure. XRD analysis confirms the presence of Ag and WO3 (NPs). The TEM images provided a good visualization of the core-spherical shell structure of the Ag–WO3 core–shell NPs. The average size of the particles ranged from 30.5 to 89 (nm). The electrical characteristics showed an increase in electrical conductivity from (5.89 × 10−4) (Ω cm)−1 to (9.91 × 10−4) (Ω cm)−1, with a drop in average activation energy values of (0.155 eV) and (0.084 eV) at a concentration of 1.6 μg/mL of silver.
This work concerns the synthesis of two types of composites based on antimony oxide named (Sb2O3):(WO3, In2O3). Thin films were fabricated using pulsed laser deposition. The compositional analysis was explored using Fourier transform infrared spectrum (FTIR), which confirms the existence of antimony, tungsten, and indium oxides in the prepared samples. The hall effect measurement showed that antimony oxide nanostructure thin films are p-type and gradually converted to n-type by the addition of tungsten oxide, while they are converted almost instantly to n-type by the addition of indium oxide. Different heterojunction solar cells were prepared from (Sb2O3:WO
... Show MoreObjective: We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment. Methods: NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13). This combination was evaluated using Chou–Talalay analysis. Results: The results showed an increased killing rate when using both 0.01 and 0.1 Multiplicity of infection (MOI) of the virus when combined with a dose of 617
... Show MoreThe ground state density distributions and electron scattering Coulomb form factors of Helium (4,6,8He) and Phosphorate (27,31P) isotopes are investigated in the framework of nuclear shell model. For stable (4He) and (31P) nuclei, the core and valence parts are studied through Harmonic-oscillator (HO) and Hulthen potentials. Correspondingly, for exotic (6,8He) and (27P) nuclei, the HO potential is applied to the core parts only, while the Hulthen potential is applied to valence parts. The parameters for HO and Hulthen are chosen to reproduce the available experimental size radii for all nuclei under study. Finally, the CO component of electron scattering charge fo
... Show MoreIn this article, we investigate the heat transfer on nanoparticles Jeffrey Hamel flow problem between two rigid plane walls. Water is used as a main fluid using four different types of nanoparticles, namely aluminum, cuprous, titanium, and silver. The results of nonlinear transformational equations with boundary conditions are solved analytically and numerically. The perturbation iteration scheme (PIS) is used for the analytic solution, while for determining the numerical results, the Rang-Kutta of the four-order scheme (RK4S) is used. The effects on the behavior of non-dimensional velocity and temperature distributions are presented in the form of tables and graphs for different values of emerging physical parameters (Rey
... Show MoreCarbon nanoparticles are prepared by sonication using carbon black powder. The surface morphology of carbon black (CB) and carbon nanoparticles (CNPs) is investigated using scanning electron microscopy (SEM). The particles size ranges from 100 nm to 400 nm for CB and from 10 nm to 100 nm for CNPs. CNPs and CB are mixed with silicon glue of different ratios of 0.025, 0.2, 0.05, and 0.1 to synthesis films. The optical properties of the prepared films are investigated through reflectance and absorbance analyses. The ratio of 0.05 for CNPs and CB is the best for solar paint because of its higher solar water heater efficiency and is then added to the silicon glue . Temperature of cold water and temperature of hot water in storage tank were ta
... Show MoreBackground: The emergence and spread of multidrug-resistant Gram-negative bacilliin burn wound infections related to biofilm formation, which lend to challenge in treatment with conventional antibiotics andprompting to search for novel antimicrobial agents to control the infections.Silver nanoparticles (AgNPs) have wide spectrum biological properties with different mechanisms of action and less toxicity towards human cells.
Objective:The goal of this study was to evaluated the anti-bacterial and anti-biofilm activities of AgNPs alone and in combination with aminoglycoside (Amikacin) and β-lactam (Ampicillin) antibiotics against multidrug resistant Gram-negative bacilli (Pseudomonas aeruginos
... Show MoreThe aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai
... Show MoreNano- particles (Ag NPs) are synthesized by using plasma Jet argon gas. The prepared Ag NPs are characterized by Atomic Absorption Spectroscopy (AAS) The measure was performed for different time exposuring 15,30,45 and 60 sec. The results shows the low concentration of nano-silver time expose (15 sec) and very) and high concentration at 60 sec. The UV-VIS spectrometer for nano-silver different time exsposuring to plasma, shows the Surface Plasmon Resonance (SPR) appeared around 419 nm, and the energy gab is 4.1 eV for the 15 second exposure and 1.6eV for 60 second exposure. The Scanning Probe Microscope (SPM) is used to identify the characterization of silver nanoparticles, the average diameter of nano-silver for 15 second exp
... Show MoreAbstract This study investigated the treatment of textile wastewater contaminated with Acid Black 210 dye (AB210) using zinc oxide nanoparticles (ZnO NPs) through adsorption and photocatalytic techniques. ZnO NPs were synthesized using a green synthesis process involving eucalyptus leaves as reducing and capping agents. The synthesized ZnO NPs were characterized using UV-Vis spectroscopy, SEM, EDAX, XRD, BET, Zeta potential, and FTIR techniques. The BET analysis revealed a specific surface area and total pore volume of 26.318 m2/g. SEM images confirmed the crystalline and spherical nature of the particles, with a particle size of 73.4 nm. A photoreactor was designed to facilitate the photo-degradation process. The study investigated the inf
... Show MoreThis study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show More