The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast construction tolerances, and allows rapid bridge disassembly to drastically reduce the time needed to replace any deteriorating structural component (e.g., the bridge deck). A series of 11 push-out tests highlight why the novel structural details of the FBSC result in superior shear load-slip displacement behavior compared to welded shear studs. The paper also quantifies the effects of bolt diameter and bolt preload and presents a design equation to predict the shear resistance of the FBSC.
The aim of this study was the isolation and characterization of Klebsiella pneumonia from 160 urine samples of patients hospitalized in children hospital in AL-Ramadi Proveng during October 2006 to May 2008. Also determination of the susceptibility of K. pneumoniae against a number of antibiotics to explain resistance mechanism for these antibiotics by using interpretative reading to avoid using it in treatment. Forty two isolates were detected as K. pneumoniae with resistance to a number of antibiotics . These isolates were tested to determine their sensitivities to a wide number of antibiotics which included β-lactum group and aminoglicosides
... Show MoreMethicillin resistant Staphylococcus aureus (MRSA) is the most common pathogenic bacteria in the hospitals and communities, the ability to form biofilm is considered the main cause of Staphylococcus pathogenicity since it provides resistance to both antibiotics and host immune response, so this study was aimed to evaluate the biofilms formation and its association with antibiotic resistance in clinical isolates of MRSA, in order to achieve this aim, 237 samples were collected from different patients with wounds infections after surgeries and samples from operations galleries from varies hospitals in Baghdad ,68 isolates out of 237 were subjected to Staphylococcus aureus according to conventional meth
... Show MoreKlebsiella pneumoniae is a pathogen of the Enterobacteriaceae family that causes healthcare-associated infections and has recently emerged as one of the most antibiotic-resistant organisms responsible for outbreaks in both community and healthcare settings. The aim of this study is to determine the resistance pattern of Klebsiella pneumoniae isolated from selected tertiary hospitals in Osun state, Nigeria. A total of 62 Klebsiella pneumoniae isolates were obtained from 1056 samples of urine, wound swab, ear swab, eye swab and other collection sites that were routinely submitted to the diagnostic laboratories of the selected tertiary
hospitals. Susceptibility to twelve (12) antibiotics (Oxoid) was det
Obesity is disorder in a foremost nutritional health it’s developed with countries developing. Also is known as increasingin fat accumulation that lead toproblem in health, besidesmay coin one of the reasons lead toloss of life,the obesity not effect on adults just but effect onoffspringand juveniles. In some ofinhabitants the incidence of obesity is superior in female than in male; on the other hand, the variation degree of the between the genderdifferby country.Obesity is generally measured by body mass index and waist circumference, Obesity are classified according to body mass index into:Pre obesity sort 1 : (25 - 29.9) kg/m2, Obesity sort 2 : (30 - 34.9 kg/m2) and extreme obesity sort 3: (40 kg/m2) or greater. Obesity is described by
... Show MoreThis research studies the effect of addition of some nanoparticles
(MgO, CuO) and grain size (30,40nm) on some physical properties
(impact strength, hardness and thermal conductivity) for a matrix
blend of epoxy resin with SBR rubber. Hand –Lay up method was
used to prepare the samples. All samples were immersed in water for
9 weeks.
The Results showed decreased in the values of impact strength and
hardness but increased the coefficient of thermal conductivity.
This paper attempted to study the effect of cutting parameters (spindle speed and feed rate) on delamination phenomena during the drilling glass-polyester composites. Drilling process was done by CNC machine with 10 mm diameter of high-speed steel (HSS) drill bit. Taguchi technique with L16 orthogonal layout was used to analyze the effective parameters on delamination factor. The optimal experiment was no. 13 with spindle speed 1273 rpm and feed 0.05 mm/rev with minimum delamination factor 1.28. &
... Show MoreCarbon nanotubes are an ideal material for infrared applications due to their
excellent electronic and photo electronic properties, suitable band gap, mechanical
and chemical stabilities. Functionalised multi-wall carbon nanotubes (f-MWCNTs)
were incorporated into polythiophen (PTh) matrix by electro polymerization
method. f-MWCNTs/ PTh nanocomposit films were prepared with 5wt% and
10wt% loading ratios of f-MWCNTs in the polymer matrix. The films are deposited
on porous silicon nanosurfaces to fabricate photoconductive detectors work in the
near IR region. The detectors were illuminated by semiconductor laser diode with
peak wavelength of 808 nm radiation power of 300 mW. FTIR spectra assignments
verify that t
The present study investigates the effect of the de-sanding (recycling system) on the bearing capacity of the bored piles. Full-scale models were conducted on two groups of piles, the first group was implemented without using this system, and the second group was implemented using the recycling system. All piles were tested by static load test, considering the time factor for which the piles were implemented. The test results indicated a significant and clear difference in the bearing capacity of the piles when using this system. The use of the recycling system led to a significant increase in the bearing capacity of the piles by 50% or more. Thus it was possible to reduce the pile length by (15 % or more) thus, and implementation costs
... Show MoreThis paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T
This research presents the possibility of using banana peel (arising from agricultural production waste) as biosorbent for removal of copper from simulated aqueous solution. Batch sorption experiments were performed as a function of pH, sorbent dose, and contact time. The optimal pH value of Copper (II) removal by banana peel was 6. The amount of sorbed metal ions was calculated as 52.632 mg/g. Sorption kinetic data were tested using pseudo-first order, and pseudo-second order models. Kinetic studies showed that the sorption followed a pseudo second order reaction due to the high correlation coefficient and the agreement between the experimental and calculated values of qe. Thermodynamic parameters such as enthalpy change (ΔH
... Show More