Preferred Language
Articles
/
jxbni4cBVTCNdQwCmFVx
New Studies for Topological Generalizations and Uncertainty in Graph Theory
...Show More Authors

Topology and its applications occupy the interest of many researching centers in the advanced world. From this point of view and because the near open sets play a very important role in general topology and they are now the research topics of many topologists worldwide and its sets doesn’t enter in fibrewise topology yet. Therefore, we use some of the near open sets to be model for introduce results and new spaces in fibrewise topological spaces. Also, there is a very important role of closure operators in constructing a topological spaces, so we introduce a new closure operators on the power set of vertices on graphs and conclusion theorems and new spaces from it. Furthermore, we discuss the relationships of connectedness between some types of graphs and new spaces by using graph closure operators and we give some definitions of near open subgraphs using the new closure operators on graphs. The boundary regions in approximation spaces are considered as uncertainty regions. There are a lot of information which result from many experiments that may make the boundary regions to be all elements of the society under study or to be all elements of the society except a small number of elements, which leads to the failure of several results and decisions which could be reached in such cases. In the context of this thesis, we tried to introduce some solution to such dilemmas, through the division of the boundary regions into several levels. This leaves us to get to the mechanism for decreasing the boundary regions and making it small as possible. We also offer some theories of uncertainty through the topological spaces which result from new closure operator of graphs on the approximation spaces. Finally, we study some related applications.

Preview PDF
Quick Preview PDF