Provides the style of benchmarking the best possible use whenevaluating the performance and evaluation, as well as improved performance,due to its consistency with the principles of good evaluation of theperformance, an extension of the completion of several functions of the timeand cost less, thereby increasing the efficiency of the management of theinstitutions, especially institutions, the media, as it became public the future ofthe message sender to the same time Zaorosaúl new media is challenging thetraditional media of what distinguishes this new interactive media and mass ledto this transition . However, the media Aljdidhoosaúl traditional mediacontinue to coexist and reinforce each Menhmaalakhr, for his wealth offreedom of opinion media among the public the future of the message and thesender has reached the interactive mass is enhanced thanks to the new media byusing the means of non-conventional. Research has come to a set ofconclusions, the most important that when assessing and evaluating performedusing the tool effective and appropriate tool like Almgarnaa to Marjaahllaalamis the new media complement to traditional media and enhanced its strengthsMtlavia weaknesses, because he focuses on the satisfaction of the public (theconsumer (by strengthening the role of the receiver of the message sender hasthis Majolh (new media), a benchmark for the performance of the media ininstitutions media and make it a standard of conduct administrative sensewithin the organizational structure, embodying the administrative contactthrough cognition of the importance of the media, especially interactive mass..
Background: Skull secondary tumors are malignant bone tumors which are increasing in incidence.Objective: The objectives of this study were to present clinical features , asses the outcome of patients with secondary skull tumors ,characterize the MRI features, locations, and extent of secondary skull tumors to determine the frequency of the symptomatic disease.Type of the study: This is a prospective study.Methods: This is a prospective study from February 2000 to February 2008. The patients were selected from five neurosurgical centers and one oncology hospital in Baghdad/Iraq. The inclusion criteria were MRI study of the head(either as an initial radiological study or following head CT scan when secondary brain tumor is suspected , vis
... Show MoreIn this paper a method to determine whether an image is forged (spliced) or not is presented. The proposed method is based on a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.
Experimental results shows LPG-
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreIn this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented