The aim of the research is to identify learning difficulties and their role in children's perception of self-concept. The researcher adopted the descriptive and analytical approach method in this study. A questionnaire was designed by the researcher to collect some related information such as biodata, family, health, diagnostic and behavioral patterns of the case. In addition, the researcher adopted the scale of learning difficulties for elementary school students prepared by Zaidan Ahmed Al-Sartawi (1995), the scale of student appreciation for the survey of learning difficulties for primary school students by Michael Best, which was translated to the Arabic language by (Saeed Abdullah Debis). The researcher adopted also the Self-Concept Scale prepared by (Ahmed Abdul Rahman and Mr. Abu Hashim (2002). The study was conducted in the Emirate of Ajman for the academic year (2017-2016). The results of the study according to the questionnaire showed that the sample suffers from difficulties in the subjects (reading, expression, calligraphy, mathematics, and geography). However, the number and type of errors are normal compared to their colleagues and on the scale of learning difficulties. The results showed that the first dimension is (academic difficulties) and in the second dimension is (behavioral characteristics) they occurred within the area of (potential learning difficulties). On the scale of the pupil’s appreciation for surveying learning difficulties, the case resulted in the presence of learning difficulties in the aspects (verbal comprehension, spoken language, and orientation). It can conclude that there are learning difficulties in the academic aspect related to (comprehension, spoken language, and knowledge). The absence of learning difficulties in terms of cognitive-motor related to (personal, social behavior, and movement coordination). As for the degree obtained by the case on the Self-Concept Scale, it was within the medium range, meaning that the case suffers from an average concept. As the student's self-understanding helps to perceive, know the strengths, and weaknesses of his personality, which supports the student's chances of success in academic achievement, academic achievement, and professional. The study recommended the activation of treatment programs designed for learning difficulties among elementary school students, by following training related to the curriculum, due to its association with active life success at the cognitive, psychological, and social levels.
تبنت العديد من المؤسسات الأكاديمية التعلم الإلكتروني منذ سنوات ، وقد أثبت فاعليته في كثير من هذه المؤسسات لاسيما تلك المهتمة بتعلم اللغات الاجنبية. الا انه مع انتشار جائحة كورونا اصبح التعليم الالكتروني ضرورة ملحة في الجامعات في جميع أنحاء العالم ، بما في ذلك الجامعات العراقية. تهدف الدراسة الحالية إلى تقصي أثر هذا الوباء على التعلم الإلكتروني في أحدى الكليات العراقية . يفترض الباحث أن تقبل ال
... Show MoreEmotion could be expressed through unimodal social behaviour’s or bimodal or it could be expressed through multimodal. This survey describes the background of facial emotion recognition and surveys the emotion recognition using visual modality. Some publicly available datasets are covered for performance evaluation. A summary of some of the research efforts to classify emotion using visual modality for the last five years from 2013 to 2018 is given in a tabular form.
Student dropout is a problem for both students and universities. However, in the crises that Lebanon is going through, it is becoming a serious financial problem for Lebanese private universities. To try to minimize it, it must be predicted in order to implement the appropriate actions. In this paper, a method to build the appropriate prediction system is presented. First, it generates a data source of predictor variables from student dataset collected from a faculty of economic sciences in Beirut between 2010 and 2020. Then, it will build a prediction model using data classification techniques based on identified predictor variables and validate it. Using open-source software and free cloud environments, a prediction program w
... Show MoreThis research shows the design and implementation of a small and simple Arabic word-puzzle game to test the effect of electronic games in enhancing and supporting the traditional learning system. The system based on from the real needs of classrooms in the Iraqi primary schools so the game is designed for primary school students (first and second grade) and this required the exploration of how schools use and teach information. The system is built by using Visual Basic version 6 programming language in conjunction with the Microsoft Office Access 2007, Results show our game based educational program is effective. 14 children (6-7 years old) played the game. The children played through multiple sessions. For each child; this game is usefu
... Show MoreObjectives:
To evaluate mothers’ attitudes toward readiness for discharge care at home for a premature baby in Intensive Care Unit at teaching hospitals in Medical City Complex and to find out the relationship between mothers’ attitudes and their socio-demographic characteristics.
Methodology: A quasi-experimental study design was carried out through the period of 6th January 2020 to 2021 to 11th March 2021, to evaluate mother’s attitude toward discharge care plan for premature babies. The study carried out in Welfare Teaching Hospital, Nursing Home Hospital and Baghdad Teaching Hospital at Medical City Complex in Baghdad City on 30 mother of premature babies in neonatal intensive care units using the nonprobability sampling
Two well-known fluorescent molecules: fluorescein sodium salt (FSS) and 2,7-dichloro fluorescein (DCF) were tried to prove the efficiency, trustability and repeatability of ISNAG fluorimeter by using discrete and continuous flow injection analysis modes.A linear range of 0.002-1 mmol/L for FSS and 0.003-0.7 mmol/L was for DCF, with LOD 0.0018 mmol/L and 0.002 mmol/L for FSS and DCF respectively, were obtained for discrete mode of analysis. While the continuous mode gave a linear range of 0.002-0.7 mmol/L and 0.003-0.5 mmol/L for FSS and DCF respectively, the LOD were 0.0016mmol/L and 0.0018 mmol/L for FSS and DCF respectively. The results were compared with classical method at variable λex for both fluorescent molecules at 95
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreHeart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show More