The aim of the current research is to know the degree to which middle school teachers and female teachers in the southern border schools use electronic educational alternatives in the field of education from their point of view and its relationship to some variables, and to achieve this goal, a random sample of (200) teachers was selected in southern border schools, and a questionnaire was prepared to collect The data, as well as the descriptive approach was used to achieve this goal. T-test and analysis of variance were used for the statistical treatment. The results concluded that the educational courses provided to male and female teachers are not sufficient. It has also been concluded that the use of electronic educational alternatives in girls ’schools is higher than that of boy’s schools. It has also been concluded that professional development did not differ according to specialization, and it did not differ in different education offices.
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More