The research deals with the principle of the prohibition of international waterway diversion in the law of international watercourses. The research reviews individual and collective doctrinal efforts that have touched upon the principle as an internationally wrongful act because of its serious damage and consequences for downstream States. The research addresses the nature of the principle of the prohibition of diversion of international watercourses; its various effects; principles of international law establishing the principle of prohibition of diversion; and its application in State practice and international justice. This principle has been enshrined in most international treaties and judicial decisions. The principle of prohibition of diversion is to protect the rights of downstream States by restricting the absolute sovereignty of source States when using the waters of their transboundary rivers. At the end of the study, the violations committed by the riverine States neighboring Iraq (Turkey and Iran) as a result of projects to divert the waterways of the Tigris and Euphrates rivers without consultation and agreement with the Iraqi side, which would have an impact on Iraq's water resources in both quantitative and qualitative terms.
In the present work, an image compression method have been modified by combining The Absolute Moment Block Truncation Coding algorithm (AMBTC) with a VQ-based image coding. At the beginning, the AMBTC algorithm based on Weber's law condition have been used to distinguish low and high detail blocks in the original image. The coder will transmit only mean of low detailed block (i.e. uniform blocks like background) on the channel instate of transmit the two reconstruction mean values and bit map for this block. While the high detail block is coded by the proposed fast encoding algorithm for vector quantized method based on the Triangular Inequality Theorem (TIE), then the coder will transmit the two reconstruction mean values (i.e. H&L)
... Show MoreAbstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show More