Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth, to the smartphone which in turn sends it to the server. At the server side, the speech features are extracted from the speech signal to be classified by neural network. To minimize the misclassification of the neural network, the user heart rate measurement is used to direct the extracted speech features to either excited (angry and happy) neural network or to the calm (sad and normal) neural network. In spite of the challenges associated with the system, the system achieved 96.49% for known speakers and 79.05% for unknown speakers
The Growth Differentiation Factor -15 (GDF-15) is a member of the transforming growth factor β superfamily. İt represents an example of the stress response cytokines. It's mostly found in cardiac myocytes, adipocytes, macrophages, endothelial cells, and vascular endothelial cells, whether they're generated normally or not. GDF-15 levels have increased and are associated with cardiovascular risk. Aim of the study: To investigate the correlation between angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) with the level of plasma GDF-15 in a group of hypertensive patients. Materials and methods: A case-control study involved 90 individuals, 60 hypertensive patients (36 on ACE inhibitors and 24 on ARBs)
... Show MoreA series of Schiff base-bearing salicylaldehyde moiety compounds (1-4) had been designed, synthesized, subjected to insilico ADMET prediction, molecular docking, characterization by FT-IR, and CHNS analysis techniques, and finally to their Anti-inflammatory profile using cyclooxygenase fluorescence inhibitor screening assay methods along with standard drugs, celecoxib, and diclofenac. The ADMET studies were used to predict which compounds would be suitable for oral administration, as well as absorption sites, bioavailability, TPSA, and drug likeness. According to the results of ADME data, all of the produced chemicals can be absorbed through the GIT and have passed Lipinski’s rule of five. Through molecular docking with PyRx 0.8, these
... Show MoreRetainers have the potential to detrimentally impact periodontal health and contribute to tooth decay.
To investigate periodontal health and bacterial biofilm related to Poly-Ether-Ether-Ketone (PEEK) fixed retainers as compared to Dead-soft coaxial fixed retainer (DSC).
A two-arm parallel groups single-centre randomized c
New chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complexes are identified as octahedral for (Rh & Pt) complexes a
... Show More