The effective stress method is developed to predict the axial capacity of piles in clay. This
method is based on the principle that, at failure, the available shear resistance at the pile soil
interface is related to the mean normal effective stress at the pile face and the effective stress
friction angle for the soil sliding on the pile material.
In this paper, the coupled non-linear finite element method is used to analyze some pile-soil
interaction problems. This computer program ( CRISP ) is used for this task. Eight- node
isoparametric elements were used for displacements while four- node elements are used for
pore pressure. Interface elements are used to simulate the interaction between the pile and the
soil. The soil is assumed to follow different models, linear elastic and modified Cam-clay
model. A comparison is made between the measured and predicted settlements and excess
pore water pressures and good convergence was obtained in which the proposed technique
used in this paper, in which the measured excess pore water pressures are considered as initial
pore pressures in the computer program ( CRISP ). No load was applied on the pile. The
dissipation of excess pore water was studied through carrying out consolidation analysis.
EFFECTIVE STRESS FINITE ELEMENT ANALYSIS OF PILE-SOIL INTERACTION PROBLEMS