Hygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is a basic principle. For that reason, this research was executed to compare gravity and pressure sand filters in terms of construction, use, efficiency, filtration rate, cost, benefit, and drawbacks to predict the performance of those units under different conditions and from an economic standpoint. It also served as a presentation and review of previous studies dealing with the evaluation and development of pressure and gravity filters. This paper gives a brief overview of filtration theory, the types and properties of filter media, filter backwashing, and operational problems that can be avoided in the filtration process.
Background: Chronic obstructive pulmonary disease causes permanent morbidity, premature mortality and great burden to the healthcare system. Smoking is it's most common risk factor and Spirometry is for diagnosing COPD and monitoring its progression.
Objectives: Early detection of chronic obstructive pulmonary disease in symptomatic smokers’ ≥ 40years by spirometry.
Methods: A cross sectional study on all symptomatic smokers aged ≥ 40 years attending ten PHCCs in Baghdad Alkarkh and Alrisafa. Those whose FEV1/FVC was <70% on spirometry; after giving bronchodilator, were considered COPD +ve.
Results: Overall, airway obstruction was seen in
... Show MoreEfficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pres
... Show MoreZubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump
... Show MoreIn this manuscript, the effect of substituting strontium with barium on the structural properties of Tl0.8Ni0.2Sr2-xBrxCa2Cu3O9-δcompound with x= 0, 0.2, 0.4, have been studied. Samples were prepared using solid state reaction technique, suitable oxides alternatives of Pb2O3, CaO, BaO and CuO with 99.99% purity as raw materials and then mixed. They were prepared in the form of discs with a diameter of 1.5 cm and a thickness of (0.2-0.3) cm under pressures 7 tons / cm2, and the samples were sintered at a constant temperature o
... Show MoreA theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).
Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.