Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
With the freedom offered by the Deep Web, people have the opportunity to express themselves freely and discretely, and sadly, this is one of the reasons why people carry out illicit activities there. In this work, a novel dataset for Dark Web active domains known as crawler-DB is presented. To build the crawler-DB, the Onion Routing Network (Tor) was sampled, and then a web crawler capable of crawling into links was built. The link addresses that are gathered by the crawler are then classified automatically into five classes. The algorithm built in this study demonstrated good performance as it achieved an accuracy of 85%. A popular text representation method was used with the proposed crawler-DB crossed by two different supervise
... Show MoreThis research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
An investigation was conducted effect of addition co- solvent on solvent extraction process for two types of a lubricating oil fraction (spindle) and (SAE-30) obtained from vacuum distillation unit of lube oil plant of Daura Refinery. In this study two types of co-solvents ( formamide and N-methyl, 2, pyrrolidone) were blended with furfural to extract aromatic hydrocarbons which are the undesirable materials in raw lubricating oil, in order to improve the viscosity index, viscosity and yield of produced lubricating oil. The studied operating condition are extraction temperature range from 70 to 110 °C for formamide and 80 to 120 °C for N-methyl, 2, pyrrolidone, solvent to oil ratio range from 1:1 to 2:1 (wt./wt.) for furfural with form
... Show MoreWireless sensor network (WSN) security is an important component for protecting data from an attacker. For improving security, cryptography technologies are divided into two kinds: symmetric and asymmetric. Therefore, the implementation of protocols for generating a secret key takes a long time in comparison to the sensor’s limitations, which decrease network throughput because they are based on an asymmetric method. The asymmetric algorithms are complex and decrease network throughput. In this paper, an encryption symmetric secret key in wireless sensor networks (WSN) is proposed. In this work, 24 experiments are proposed, which are encryption using the AES algorithm in the cases of 1 key, 10 keys, 25 keys, and 50 keys. I
... Show MoreThe reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show MoreThe magnetic dipole moments and the root mean square radius have been calculated some the Fluorine (A= 17, 19, 20, 21) isotopes based on the sd-shell model using universal sd-shell interaction A (USDA). All studied isotopes are composed of 16O nucleus that is considered as an inert core and the other valence particles are moving over the sd-shell model space within 1d5/2, 2s1/2 and 1d3/2 orbits. The configuration of mixing shell model with limiting number of orbitals in the model space outside the inert core fail to reproduce the measured magnetic dipole moments. Therefore, and for the purpose of enhancing the calculations, the discarded space has been included the core polarization effect through the effective g-factors. The harmonic os
... Show MoreBreast cancer was one of the most common reasons for death among the women in the world. Limited awareness of the seriousness of this disease, shortage number of specialists in hospitals and waiting the diagnostic for a long period time that might increase the probability of expansion the injury cases. Consequently, various machine learning techniques have been formulated to decrease the time taken of decision making for diagnoses the breast cancer and that might minimize the mortality rate. The proposed system consists of two phases. Firstly, data pre-processing (data cleaning, selection) of the data mining are used in the breast cancer dataset taken from the University of California, Irvine machine learning repository in this stage we
... Show MoreThis research examines the quantitative analysis to assess the efficiency of the transport network in Sadr City, where the study area suffers from a large traffic movement for the variability of traffic flow and intensity at peak hours as a result of inside traffic and outside of it, especially in the neighborhoods of population with economic concentration. &n
... Show MoreOsteoarthritis (OA) is recognized as a main public health difficult. It is one of the major reasons of reduced function that diminishes quality of life worldwide. Osteoarthritis is a very common disorder affecting the joint cartilage. As there is no cure for osteoarthritis, treatments currently focus on management of symptoms. Pain relief, improved joint function, and joint stability are the main goals of therapy. The muscle weakness and muscle atrophy contribute to the disease process. So, rehabilitation and physiotherapy were often prescribed with the intention to alleviate pain and increase mobility. Medical therapy provides modest benefits in pain reduction and functional improvement; however, non-steroidal anti-inflammatory dru
... Show More