Background: Energy drinks are non alcoholic beverages which contain stimulant drugs chiefly caffeine and marketed as mental and physical stimulators. Consumption of energy drinks is popular practice among college students as they are exposed to academic stress. Caffeine which is the main constituent of energy drinks could become an addictive substance or cause intoxication. Objectives: This study aims to assess the prevalence of energy drinks consumption among medical students of alkindy college of Medicine.Type of the study: A cross sectional study.Methods: It was performed at alkindy medical college on March 2016. A total number of 600 students were contacted to participate in this study. A self administered questionnaire was used to collect the data. Spss version 18.0 was used for statistical analysis.Results: Out of 600 students, 501 (83.5%) participated in the study. The majority were females 304 (60.7%) and only 197 (39.3%) were males with a mean age of (20.43 ± 1.74). 120 (24%) of participants had consumed energy drinks at least once. Higher proportion of male students 77 (64%) consumed energy drinks compared to females 43 (36%). Regarding inspiration of first use of energy drinks, the highest percentage 9.8% was due to friends. Majority of consumers 85 (17.2%) used energy drinks irregularly. The main cause of energy drinks consumption was focusing for studying 7.2% (n=36). Conclusions: Energy drinks consumption is a common practice among medical students. Friends had a strong influence on usage of energy drinks. Students consumed energy drinks mainly for focusing for studying. Further studies are recommended to evaluate factors involved in consumption of these drinks among medical students and their understanding of the risks involved as well as possible interventions to promote safe consumption
Schiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show MoreTarget tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocr
... Show More<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show MoreThe production of power using the process of pressure–retarded osmosis (PRO) has been studied both experimentally and theoretically for simulated sea water vs. river water and deionized water under two cases: the first is for simulated real conditions of sea water and river water and second under low brine solution concentration to examine the full profile of the power- pressure. The influence of concentration polarization (CP) on water flux has been examined as well.
A solar cell was manufactured from local materials and was dyed using dyes extracted from different organic plants. The solar cell glass slides were coated with a nano-porous layer of Titanium Oxide and infused with two types of acids, Nitric acid and Acetic acid. The organic dyes were extracted from Pomegranate, Hibiscus, Blackberry and Blue Flowers. They were then tested and a comparison was made for the amount of voltage they generate when exposed to sunlight. Hibiscus sabdariffa extract had the best performance parameters; also Different plants give different levels of voltage.
Wind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc
... Show MoreBefore setting a turbine in a wind farms allocated for power generation, it must be know the appropriate turbine class for that site depending on the turbulence intensity of the winds in the studied area and the IEC-61400 standard. The importance of identifying a class of wind turbine is due to the complex environmental conditions that produce turbulent air which, in turn, may cause damage to the turbine blades and weakness in the performance. Therefore, the ambient turbulence intensity is a very important factor in determining the performance and productivity of the wind turbines.
In this research we calculate Turbulence Intensity "TI" in the province of Nasiriyah, south of Iraq (Lat. 31.052049 , Lon. 46.261021) for the years 2008, 2
The manifestations of climate change are increasing with the days: sudden rains and floods, lakes that evaporate, rivers that experience unprecedentedly low water levels, and successive droughts such as the Tigris, Euphrates, Rhine, and Lape rivers. At the same time, energy consumption is increasing, and there is no way to stop the warming of the Earth's atmosphere despite the many conferences and growing interest in environmental problems. An aspect that has not received sufficient attention is the tremendous heat produced by human activities. This work links four elements in the built environment that are known for their high energy consumption (houses, supermarkets, greenhouses, and asphalt roads) according t
... Show MoreMeans of communication has a great impact on all fields of awareness including health awareness by increasing the knowledge of community about health and developing their abilities to improve human health and cultural awareness. According to the importance of health awareness for a community to develop their intellectual and physical integrity, the researcher has found that it is essential to know the role of means of communication as a source of information for many students being active and main segments to build their society intellectually, socially and economically.
The research has focused on the study of health awareness among students and their health knowledge derived from the means of communicat
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More