stract This paper includes studying (dynamic of double chaos) in two steps: First Step:- Applying ordinary differential equation have behaved chaotically such as (Duffing's equation) on (double pendulum) equation system to get new system of ordinary differential equations depend on it next step. Second Step:- We demonstrate existence of a dynamics of double chaos in Duffing's equation by relying on graphical result of Poincare's map from numerical simulation.
In this work we reported the synchronization delay in
semiconductor laser (SL) networks. The unidirectional
configurations between successive oscillators and the correlation
between them are achieved. The coupling strength is a control
parameter so when we increase coupling strength the dynamic of the
system has been change. In addition the time required to synchronize
network components (delay of synchronization) has been studied as
well. The synchronization delay has been increased by mean of
increasing the number of oscillators. Finally, explanation of the time
required to synchronize oscillators in the network at different
coupling strengths.
Secured multimedia data has grown in importance over the last few decades to safeguard multimedia content from unwanted users. Generally speaking, a number of methods have been employed to hide important visual data from eavesdroppers, one of which is chaotic encryption. This review article will examine chaotic encryption methods currently in use, highlighting their benefits and drawbacks in terms of their applicability for picture security.
In modern era, which requires the use of networks in the transmission of data across distances, the transport or storage of such data is required to be safe. The protection methods are developed to ensure data security. New schemes are proposed that merge crypto graphical principles with other systems to enhance information security. Chaos maps are one of interesting systems which are merged with cryptography for better encryption performance. Biometrics is considered an effective element in many access security systems. In this paper, two systems which are fingerprint biometrics and chaos logistic map are combined in the encryption of a text message to produce strong cipher that can withstand many types of attacks. The histogram analysis o
... Show MoreIn the current paper, the effect of fear in three species Beddington–DeAngelis food chain model is investigated. A three species food chain model incorporating Beddington-DeAngelis functional response is proposed, where the growth rate in the first and second level decreases due to existence of predator in the upper level. The existence, uniqueness and boundedness of the solution of the model are studied. All the possible equilibrium points are determined. The local as well as global stability of the system are investigated. The persistence conditions of the system are established. The local bifurcation analysis of the system is carried out. Finally, numerical simulations are used t
A harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.
In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show More