A theoretical calculation of the reorientation energy for non adiabatic electron transfer at
interface between metal and semiconductor system was carried out. The continuum outer
sphere theory of electron transfer reaction has been extensively used for electron transfer
between metal/semiconductor interface .It is found that in these calculations the reorientation
energy is proportional to the optical and statistical dielectric constant of semiconductor ,
properties of metal ,and the distance between metal and semiconductor .Results of
reorientation energy show that ZnO semiconductor with metal Au possess a good matching as
compared with ZnS and ZnSe . Theoretical calculation showed a good agreement with
experimental value.
Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO2 semiconductor interface. Available from: https://www.researchgate.net/publication/362773032_Theoretical_studies_of_electronic_transition_characteristics_of_senstizer_molecule_dye_N3-SnO2_semiconductor_interface [accessed May 01 2023].
A description of the theoretical of the reorganization energies have been described according to the outer-sphere Marcus model .It is a given expression according this model unable to evaluate the reorganization energy for electron transfer at liquid /liquid interface. The spherical model approach have been used to evaluate the radius of donor and acceptor liquid alternatively .Theoretical results of the reorganization free energy for electron transfer at liquid/liquid interface system was carried out . Matlap program is then used to calculate ð¸0 for electron transfer reaction between water donor stated and many liquid acceptor state. This shows a good agreement with the experiment. The results
... Show MoreA theoretical calculation of the reorganization energies is demonstrated for semiconductor (TiOâ‚‚, ZnO) and organic dye (safranine T, and coumarin) with a variety solvent such that (water, 1Âpropanol, Formamide, Acetonitrile and Ethanol). The reorganization energy values for dye –semiconductor interface system are large in high polar solvent (water 741 .0 ï¬ , Acetonitrile 708 .0 ï¬ , Ethanol 669 .0 ï¬ ) and small in low polar solvent(1Âpropanol 635 .0 ï¬ . The reorganization energy in safranine T –semiconductor system is larger ( 635 741.0 ï€ )than in coumarin –semiconductor for with the same solvents ( 612
... Show MoreTheoretically description of the electron transfer of the electron transfer of met/mol has been investigated in this work according to the quantum theory. By using a model that is derived depending on the first order perturbation theory, the rate constant at met/mol interface can be calculated with the calculated reorganization energy. The reorganization energy that is evaluated according to the outer sphere model is based on the electstatistics potential of the molecular donor and acceptor. The molecular parameters introduced in this model are the molecular weight, mass, density, and radius of molecule have been evaluated according to the apparent molar volume using spherical approach. Th
... Show MoreIn this paper, we focused on the investigated and studied the cold fusion reaction rate for D-D using the theory of Bose-Einstein condensation and depending on the quantum mechanics consideration. The quantum theory was based on the concept of single conventional of deuterons in Nickel-metal due to Bose-Einstein condensation, it has supplied a consistent description and explained of the experimental data. The analysis theory model has capable of explaining the physical behaviour of deuteron induced nuclear reactions in Nickel metals upon the five-star matter, it's the most expected for a quantitative predicted of the physical theory. Based on the Bose-Einstein condensation theorem formulation, we calculation the cold fusion reaction rate fo
... Show MoreThe research includes the study and calculation of the modulation function of Optical Semiconductor Fractal Modulator and spatial frequency for different values of Silicon modulator transmittance percentage(10%,35%,45%,58%),it found the relation between the modulation function of Silicon and spatial frequency, the exponential relation of all values of the transmittance , the best state of modulation function when the value of transmittance is T=58% ,also the research includes the study of the relation of transmittance with different values of refractive index of Silicon . So the research involves building a computer program of output data which would relate to fractal optical modulation made of semiconductor mate
... Show MoreThe dye–semiconductor interface between N749 sensitized and zinc semiconductor (ZnSe) has been investigated and studied according to quantum transition theory with focusing on the electron transfer processes from the N749 sensitized (donor) to the ZnSe semiconductor (acceptor). The electron transfer rate constant and the orientation energy were studied and evaluated depended on the polarity of solvents according to refractive index and dielectric constant coefficient of solvents and ZnSe semiconductor. Attention focusing on the influence of orientation energies on the behavior of electron transfer rate constant. Differentdata of rate constant was discussion with orientation energy and effective driving energy for N749-ZnSe system.
... Show MoreTheoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].
The rate of electron transfer from N3 sensitized by dye to TiO2 semiconductor in variety solvent have been calculated as a function of reorientation energy effective free energy , volume of semiconductor , attenuation and lattice constant of semiconductor . A very strong dependence of the electron transfer rate constant on the reorientation and effective free energy .Results of calculation indicate that TiO2 is available to use with N3 dye .Our calculation results show that a good agreement with experimental result