The aim of this paper is to introduce a new type of proper mappings called semi-p-proper mapping by using semi-p-open sets, which is weaker than the proper mapping. Some properties and characterizations of this type of mappings are given.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreIn this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solution
... Show MoreIn this paper, we generalized the principle of Banach contractive to the relative formula and then used this formula to prove that the set valued mapping has a fixed point in a complete partial metric space. We also showed that the set-valued mapping can have a fixed point in a complete partial metric space without satisfying the contraction condition. Additionally, we justified an example for our proof.
Tensile strength is a critical property of Hot Mix Asphalt (HMA) pavements and is closely related to distresses such as fatigue cracking. This study aims to evaluate methods for assessing fatigue cracking in Asphalt Concrete (AC) mixes. In order to achieve optimum density at different binder contents, the mixes were compressed using a gyratory compactor. Tensile strength was assessed using the Indirect Tensile (IDT) and Semi-Circular Bend (SCB) tests. The results showed that the tensile strength measured by the SCB test was consistently higher than that measured by the IDT test at 25 °C. In addition, the SCB test showed a stronger correlation between increasing binder content and tensile strength. For binder contents ranging from 4
... Show MoreIn this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
In this paper, the linear system of Fredholm integral equations is solving using Open Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to solve this system. Compare the results of suggested method with the results of another method (closed Newton-Cotes formula) Finally, at the end of each method, algorithms and programs developed and written in MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method
The aim of this research is to prove the idea of maximum mX-N-open set, m-N-extremally disconnected with respect to t and provide some definitions by utilizing the idea of mX-N-open sets. Some properties of these sets are studied.
In this paper, we procure the notions of neutrosophic simply b-open set, neutrosophic simply b-open cover, and neutrosophic simply b-compactness via neutrosophic topological spaces. Then, we establish some remarks, propositions, and theorems on neutrosophic simply
b-compactness. Further, we furnish some counter examples where the result fails.
Expressions for the molecular topological features of silicon carbide compounds are essential for quantitative structure-property and structure-activity interactions. Chemical Graph Theory is a subfield of computational chemistry that investigates topological indices of molecular networks that correlate well with the chemical characteristics of chemical compounds. In the modern age, topological indices are extremely important in the study of graph theory. Topological indices are critical tools for understanding the core topology of chemical structures while examining chemical substances. In this article, compute the first and second k-Banhatti index, modified first and second k-Banhatti index, first and second k-hyper Banhatti index, fir
... Show More