Preferred Language
Articles
/
jih-3255
Spectroscopic Diagnostic of Laser-Induced Zn Plasma
...Show More Authors

The sample's physical characteristics and laser parameters impact the generation and characterization of Laser-Induced Plasma (LIP), which is a relevant phenomenon in many applications. We investigated the effect of laser energy on laser-induced Zn plasma characterization in this study. A Zn plasma with a repeating frequency of 6 Hz, a first wavelength of 1064 nm, a pulse duration of 10 ns, and a laser energy range of 300 mJ to 500 mJ was created using a Q-switched ND: YAG laser. The basic plasma properties, such as electron temperature and density, were estimated using optical emission spectroscopy (OES). The electrons' temperature was measured by the Boltzmann plot method, and the value of the electrons' temperature ranged from 1.6 eV to 2.051 eV in the laser energy range (300-500) mJ. In electron density estimation using the Stark broadening methods, the density value range from 12.75×1017 cm-3 to 19.50×1017 cm-3, in laser energy range (300-500 ) mJ. In addition, various plasma characteristics such as plasma frequency (fp), the number of particles in the Debye sphere (ND), and Debye length (λD) were estimated. We found that laser energy affects every plasma parameter.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Spectroscopy Diagnostic of Laser Intensity Effect on Zn Plasma Parameters Generated by Nd: YAG Laser
...Show More Authors

      The creation and characterization of laser-generated plasma are affected by laser irradiance, representing significant phenomena in many applications.  The present work studied the spectroscopy diagnostic of laser irradiance effect on Zn plasma features created in the air by a Q-switched Nd: YAG laser at the fundamental wavelength (1064nm).  The major plasma parameters (electron temperature and electron density) have been measured using the Boltzmann plot and the Stark broadening methods.  The value of electrons temperature ranged from 6138–6067 K, and the electron density in the range of 1.4×1018 to 2×1018 cm-3, for laser irradiance range from 2.1 to 4.8×108 (W/cm2

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Minar International Journal Of Applied Sciences And Technology
Electron density spectroscopic measurement in Al laser induced plasma
...Show More Authors

Plasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri

... Show More
Publication Date
Sat Oct 01 2022
Journal Name
International Journal Of Nanoscience
Preparation and Physical Properties of Mg-Zn Nano-crystal by Laser-induced Plasma
...Show More Authors

To learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
Spectroscopic Diagnostic of Cadmium Sulfide Plasma Produced By LIBS
...Show More Authors

Abstract

       The current study was carried out to reveal the plasma parameters such as ,the electron temperature ( ), electron density (ne) , plasma frequency (fp), Debye length ( ) , Debye number (   for  CdS to employ the LIBS for the purpose of analyzing and determining spectral emission lines using . The results of electron temperature for CdS range (0.746-0.856) eV , the electron density(3.909-4.691)×1018 cm-3. Finally ,we discuss plasma parameters of CdS  through  nano second  laser generated plasma .

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Characterization of Laser induced cadmium plasma in air
...Show More Authors

In this paper, the fundamental harmonic of a Nd:YAG laser (Q-switched 1064nm wavelength, 1 Hz repetition rate and 9 ns pulse duration) has been used for the ablation of cadmium samples in air at atmospheric pressure and the generation of the cadmium plasma. The experimentally observed lines of cadmium plasma emission have been used to calculate the plasma parameters such as (electron temperature (TReR), electron density (nReR), Debye length (λRDR) and plasma frequency (ωRpR)). Line pair ratio of neutral species have been used for the electron temperature and electron density measurements. Plasma parameters were studied as a functions of laser pulse energy.

View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Spectroscopic Diagnosis of the CdO:CoO Plasma Produced by Nd:YAG Laser
...Show More Authors

      In this paper, the optical emission spectrum (OES) technique was used to analyze the spectrum resulting from the (CdO:CoO)  plasma in air, produced by Nd:YAG laser with λ=1064 nm, τ=10 ns, a focal length of 10 cm, and a range of energy of 200-500 mJ. We identified laser-induced plasma parameters such as electron temperature (Te) using Boltzmann plot method, density of electron (ne), length of Debye (λD), frequency of plasma (fp), and number of Debye (ND), using two-Line-Ratio method. At a mixing ratio of X= 0.5, the (CdO:CoO) plasma spectrum was recorded for different energies. The results of plasma parameters caused by laser showed that, with t

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (8)
Scopus Crossref
Publication Date
Sat Feb 26 2022
Journal Name
Iraqi Journal Of Science
Spectroscopic Analysis of CdO: Fe Plasma Generated by Nd: YAG Laser
...Show More Authors

     In this work, the optical emission spectrum technique was used to analyze the optical emission spectrum of (CdO: Fe) plasma produced by laser Nd: YAG with a wavelength of (532) nm, a period of 10 ns, and a focal length of 10 cm in the energy range of (200-500) mJ. The electron temperature (Te) was determined using the method of line intensities ratio. Using the Saha-Boltzmann equation, the electron density (ne) was determined. Other plasma parameters such as plasma frequency (fp), Debye length (λD) and Debye number (ND) were also measured. The CdO: Fe (at a mixing ratio of X= 0.5.) plasma spectrum was observed for different energies. As a fu

... Show More
View Publication Preview PDF
Scopus (21)
Crossref (17)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Spectroscopic analysis of magnesium-aluminum alloys by laser induced breakdown spectroscopy
...Show More Authors

In this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Spectroscopic Analysis of CdO1-X: SnX Plasma Produced by Nd:YAG Laser
...Show More Authors

In this work, the optical emission spectrum technique was used to analyze the spectrum resulting from the CdO:Sn plasma produced by laser Nd:YAG with a wavelength of (1064) nm, duration of (9) ns, and a focal length of (10) cm in the range of energy of 500-800 mJ. The electron temperature (Te) was calculated using the in ratio line intensities method, while the electron density (ne) was calculated using Saha-Boltzmann equation. Also, other plasma parameters were calculated, such as plasma (fp), Debye length (λD) and Debye number (ND). At mixing ratios of X=0.1, 0.3 and 0.5, the CdO1-X :SnX plasma spectrum was recorded for different energies. The change

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (13)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
Some physical properties of SiO2 laser induced plasma
...Show More Authors

In this work; Silicon dioxide (SiO2) plasma plume was prepared by laser induced plasma (LIP). The electron number density, plasma frequency and Debye length were calculated by reading the data of I-V curve of Langmuir probe which was used as a diagnostic method of measuring plasma properties. Pulsed Nd:YAG laser was used for measuring the electron number density of SiO2 plasma plume under vacuum environment with varying both vacuum pressure and axial distance from the target surface. Some physical properties of the plasma generated such as electron density, plasma frequency and Debye length have been measured experimentally and the effects of vacuum pressure and Langmuir probe distance from the target were studied on those variables. An

... Show More
View Publication Preview PDF