In previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the relationships between these kinds of modules and fully fuzzy visible modules. Many other intersecting results we found.
In this paper we investigated some new properties of π-Armendariz rings and studied the relationships between π-Armendariz rings and central Armendariz rings, nil-Armendariz rings, semicommutative rings, skew Armendariz rings, α-compatible rings and others. We proved that if R is a central Armendariz, then R is π-Armendariz ring. Also we explained how skew Armendariz rings can be ?-Armendariz, for that we proved that if R is a skew Armendariz π-compatible ring, then R is π-Armendariz. Examples are given to illustrate the relations between concepts.
Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.
We define and study new ideas of fibrewise topological space namely fibrewise multi-topological space . We also submit the relevance of fibrewise closed and open topological space . Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space . Furthermore, we propose and prove a number of statements about these ideas. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise multi-T0. spaces, fibrewise multi-T1spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal
... Show MoreSuppose R has been an identity-preserving commutative ring, and suppose V has been a legitimate submodule of R-module W. A submodule V has been J-Prime Occasionally as well as occasionally based on what’s needed, it has been acceptable: x ∈ V + J(W) according to some of that r ∈ R, x ∈ W and J(W) an interpretation of the Jacobson radical of W, which x ∈ V or r ∈ [V: W] = {s ∈ R; sW ⊆ V}. To that end, we investigate the notion of J-Prime submodules and characterize some of the attributes of has been classification of submodules.
In this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule of an -module is called an approximaitly prime submodule of (for short app-prime submodule), if when ever , where , , implies that either or . So, an ideal of a ring is called app-prime ideal of if is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.
Let R be a ring and let A be a unitary left R-module. A proper submodule H of an R-module A is called 2-absorbing , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H or rs∈[H:A], and a proper submodule H of an R-module A is called quasi-prime , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H. This led us to introduce the concept pseudo quasi-2-absorbing submodule, as a generalization of both concepts above, where a proper submodule H of an R-module A is called a pseudo quasi-2-absorbing submodule of A, if whenever rsta∈H,where r,s,t∈R,a∈A, implies that either rsa∈H+soc(A) or sta∈H+soc(A) or rta∈H+soc(A), where soc(A) is socal of an
... Show MoreThroughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.
The study of torsion {torsion free) fuzzy modules over fuzzy
integtal domain as a generalization oftorsion (torsion free) modules.
Let be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.
The primary aim of this paper is to present two various standpoints to define generalized membership relations, and state the implication between them, in order to categorize the digraphs and assist for their gauge exactness and roughness. In addition, we define several kinds of fuzzy digraphs.