Preferred Language
Articles
/
jih-2952
The Completion of Generalized 2-Inner Product Spaces
...Show More Authors

A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space  can be developed into a complete metric space , referred to as completion of .

We use the b-Cauchy sequence to form  which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove  to be a 2-normed space. Then, we construct an isometric by defining the function from  to ; thus  and  are isometric, where  is the subset of  composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that  is dense in ,  is complete and the uniqueness of  is up to isometrics

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-inner product spaces of quasi-Sobolev spaces and their completeness
...Show More Authors

      Sequences spaces  , m  ,  p  have called quasi-Sobolev spaces were  introduced   by Jawad . K. Al-Delfi in 2013  [1]. In this  paper , we deal with notion of  quasi-inner product  space  by using concept of  quasi-normed  space which is generalized  to normed space and given a  relationship  between  pre-Hilbert space and a  quasi-inner product space with important  results   and   examples.  Completeness properties in quasi-inner   product space gives  us  concept of  quasi-Hilbert space .  We show  that ,  not  all  quasi-Sobolev spa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
About the construction of fuzzy inner product
...Show More Authors

In this research for each positive integer integer and is accompanied by connecting that number with the number of Bashz Attabq result any two functions midwives to derive a positive integer so that there is a point

View Publication Preview PDF
Publication Date
Fri Sep 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The product of para - compact spaces
...Show More Authors

The product  of   rn-paracompact and   rn-strongly  paracompact are briefly disc. ussed.

View Publication Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
-Generalized b- Closed Sets in Topological Spaces
...Show More Authors

     In this paper we introduce a new class of sets called -generalized b- closed (briefly gb closed) sets. We study some of its basic properties. This class of sets is strictly placed between the class of gp- closed sets and the class of gsp- closed sets. Further the notion of b- space is introduced and studied.

2000 Mathematics Subject Classification: 54A05

 

View Publication Preview PDF
Publication Date
Sat Jul 15 2023
Journal Name
Journal Of Interdisciplinary Mathematics
Some games via semi-generalized regular spaces
...Show More Authors

In this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented

View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
New Normality on Generalized Topological Spaces
...Show More Authors
Abstract<p>A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.</p>
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Generalized Regular Continuous Functions In Topological Spaces
...Show More Authors

In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them

View Publication Preview PDF
Publication Date
Fri Feb 12 2016
Journal Name
International Journal Of Advanced Statistics And Probability
Two fixed point theorems in generalized metric spaces
...Show More Authors

<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>

View Publication
Crossref
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On generalized b*-Closed Sets In Topological Spaces
...Show More Authors

 In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its  basic properties and investigate the relations between the associated topology. 

View Publication Preview PDF
Publication Date
Fri Nov 18 2016
Journal Name
International Journal Of Applied Mathematical Research
On common fixed points in generalized Menger spaces
...Show More Authors

R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.

View Publication
Crossref