A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solution graphs are shown. The results confirmed that the accuracy of this technique converges to the integer order of the issues.
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions and for exponentially fitting problems, with being the problem’s major frequency utilized to improve the precision of the method. The modified method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a framework of equations that can be sol
... Show MoreIn this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
In this paper, we proved the existence and uniqueness of the solution of nonlinear Volterra fuzzy integral equations of the second kind.
The fractional free volume (Fh) in polystyrene (PS) as a function of neutron -irradiation dose has been measured, using positron annihilation lifetime (PAL) method. The results show that Fh values decreased with increasing n-irradiation dose up to a total dose of 501.03× 10-2 Gy.
A percentage reduction of 2.14 in Fh values is noticed after the initial n-dose corresponding to a percentage reduction in the free volume equal to 42.14/Gy.
The total n-dose induces a percentage reduction of 7.26, corresponding to a percentage reduction of 1.45/Gy. These results indicate that cross -linking is the predominant process induced by n-irradiation.
The results suggest that n-irradiation induces structure changes in PS, causing cross-linking
A new class of higher derivatives for harmonic univalent functions defined by a generalized fractional integral operator inside an open unit disk E is the aim of this paper.
Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreIn this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.