Preferred Language
Articles
/
jih-2862
A new Technique For Solving Fractional Nonlinear Equations By Sumudu Transform and Adomian Decomposition Method
...Show More Authors

A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solution graphs are shown. The results confirmed that the accuracy of this technique converges to the integer order of the issues.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Solving Fuzzy Differential Equations by Using Power Series
...Show More Authors

In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when the-level equals one.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Heun Method Using to Solve System of NonLinear Functional Differential Equations
...Show More Authors

In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving of the Quadratic Fractional Programming Problems by a Modified Symmetric Fuzzy Approach
...Show More Authors

The aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Mar 30 2024
Journal Name
Journal Of Kufa For Mathematics And Computer
Approximate Solution of Linear and Nonlinear Partial Differential Equations Using Picard’s Iterative Method
...Show More Authors

Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions of Fractional Integral and Fractional Integrodifferential Equations
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.

View Publication Preview PDF
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Blasius Equations
...Show More Authors

The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 01 2017
Journal Name
Journal Of King Saud University - Science
A semi-analytical iterative technique for solving chemistry problems
...Show More Authors

View Publication
Crossref (17)
Crossref
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach to Solving Linear Fractional Programming Problem with Rough Interval Coefficients in the Objective Function
...Show More Authors

This paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Deriving the Composite Simpson Rule by Using Bernstein Polynomials for Solving Volterra Integral Equations
...Show More Authors

In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Repeated Corrected Simpson's 3/8 Quadrature Method for Solving Fredholm Linear Integral Equations of the Second Kind
...Show More Authors

  In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example

View Publication Preview PDF