The restriction concept is a basic feature in the field of measure theory and has many important properties. This article introduces the notion of restriction of a non-empty class of subset of the power set on a nonempty subset of a universal set. Characterization and examples of the proposed concept are given, and several properties of restriction are investigated. Furthermore, the relation between the P*–field and the restriction of the P*–field is studied, explaining that the restriction of the P*–field is a P*–field too. In addition, it has been shown that the restriction of the P*–field is not necessarily contained in the P*–field, and the converse is true. We provide a necessary condition for the P*–field to obtain that the restriction of the P*–field is included in the P*–field. Finally, this article aims to study the restriction notion and give some propositions, lemmas, and theorems related to the proposed concept.
Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .