Heart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms, which leads to severe concerns such as heart failure and stroke and kidney failure. In this regard, the authors highlight an amount of literature considered the most practical in utilizing machine learning techniques in predicting heart disease. Twenty articles were chosen out of fifty articles gathered and summarised in a table form. The main goal is to make this article a reference that can be utilized in the future to assist healthcare workers in studying these techniques with ease and saving time and effort on them. This article has concluded that machine learning techniques have a significant and influential role in analyzing disease data, predicting heart disease, and assisting decision-making. In addition, these techniques can analyze data that reaches millions of cohorts.
Mannich base is a versatile compound that can be easily modified to introduce different functional groups, allowing for the creation diverse selection of items with varying features. Additionally, the Mannich reaction is a valuable tool in organic synthesis, due to the fact it provides an effortless and efficient approach for synthesizing C-N bonds. Overall, The Mannich base and even its derivatives are essential in many aspects of chemistry and its complexes are in the pharmaceutical industry. Studies have revealed that it shows good anti-cancer, anti-mycobacterial, remarkable anti-HIV, anti-tubercular, anti-convulsant, anti-fungal, antiviral, antitumor, cytotoxic activities and in industrial applications such as in the creation of polymer
... Show MoreTrimethoprim derivative Schiff bases are versatile ligands synthesized with carbonyl groups from the condensation of primary amines (amino acids). Because of their broad range of biological activity, these compounds are very important in the medical and pharmaceutical fields. Biological activities such as antibacterial, antifungal and antitumor activity are often seen. Transition metal complexes derived from biological activity Schiff base ligands have been commonly used.
In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show MoreBackground: Speckle tracking echocardiography (STE)-derived mitral annular displacement (MAD) utilizes the speckle tracking technique to measure strain vectors, which provides accurate estimates of left ventricular ejection fraction (LVEF).Objectives: To validate the accuracy of mitral annular displacement (MAD), assessed by Speckle Tracking Echocardiography (STE), as a surrogate for determination of left ventricular systolic function in comparison to 2-Dimensions Simpson method in patients with different heart diseases.Methods : This cross-sectional study included patients who referred to outpatient department of Ibn Albitar Center for Cardiac Surgery, Baghdad, Iraq, between October 2012 and April 2013. STE continuously tracked annular
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreThe purpose of this study was to examine the role of cortisol, and it is related to BMI in the chronic diseases which may increase early cardiovascular disease (CVD) in old Iraqi. The subjects were 116 adults, aged 51-71 years. Body Mass Index (BMI), Waist Circumferences (WC) and Waist Hip Ratio (WHR) were used as a measure of adiposity. Investigation showed highly significant difference between patients in BMI ranges, most of male were in an obese weight range (48.5%), as well in women. There were no significant correlations between serum cortisol concentration and age both gender groups. While there were highly significant correlations between cortisol level and BMI, waist, and WHR (except in female subjects), also there were highly signi
... Show More