In this paper, we study a new concept of fuzzy sub-module, called fuzzy socle semi-prime sub-module that is a generalization the concept of semi-prime fuzzy sub-module and fuzzy of approximately semi-prime sub-module in the ordinary sense. This leads us to introduce level property which studies the relation between the ordinary and fuzzy sense of approximately semi-prime sub-module. Also, some of its characteristics and notions such as the intersection, image and external direct sum of fuzzy socle semi-prime sub-modules are introduced. Furthermore, the relation between the fuzzy socle semi-prime sub-module and other types of fuzzy sub-module presented.
This study includes the manufacture of four ternary alloys represented S60Se40-XPbX with weight ratios x = 0, 10, 20, and 30 by the melting point method. The components of each alloy were mixed separately, then placed in quartz ampoules and vacuumed out with a vacuum of roger that 10−4 Torr. The ampule was heated in two stages to avoid sudden dissipation and precipitation of selenium on the inner mass of the quartz tube. The ampoule was gradually heated and kept at 450°C for approximately 4 hours followed by 950°C for 10 hours.at a rate of 10 degrees Celsius, the temperature of the electric furnace
The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .
Throughout this paper R represents commutative ring with identity, and M is a unitary left R-module. The purpose of this paper is to study a new concept, (up to our knowledge), named a semi-extending modules, as generalization of extending modules, where an Rmodule M is called semi-extending if every sub module of M is a semi-essential in a direct summand of M. Various properties of semi-extending module are considered. Moreover, we investigate the relationships between semi-extending modules and other related concepts, such as CLS-modules and FI- extending modules.
Let R be a commutative ring with unity 1 6= 0, and let M be a unitary left module over R. In this paper we introduce the notion of epiform∗ modules. Various properties of this class of modules are given and some relationships between these modules and other related modules are introduced.
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
Let R be a commutative ring with identity, and let M be a unitary (left) R- modul e. The ideal annRM = {r E R;rm = 0 V mE M} plays a central
role in our work. In fact, we shall be concemed with the case where annR1i1 = annR(x) for some x EM such modules will be called bounded modules.[t htrns out that there are many classes of modules properly contained in the class of bounded modules such as cyclic modules, torsion -G·ee modulcs,faithful multiplicat
... Show MoreWe report the detail characterizations and
Aromaticity, antiaromaticity and chemical bonding in the ground (S0), first singlet excited (S1) and lowest triplet (T1) electronic states of disulfur dinitride, S2N2, were investigated by analysing the isotropic magnetic shielding, σiso(r), in the space surrounding the molecule for each electronic state. The σiso(r) values were calculated by state-optimized CASSCF/cc-pVTZ wave functions with 22 electrons in 16 orbitals constructed from gauge-including atomic orbitals (GIAOs). The S1 and T1 electronic states were confirmed as 11Au and 13B3u, respectively, through linear response CC3/aug-cc-pVTZ calculations of the vertical excitation energies for eight singlet (S1–S8) and eight triplet (T1–T8) electronic states. The aromaticities of S
... Show MoreLet be a commutative ring with 1 and be left unitary . In this papers we introduced and studied concept P-small compressible (An is said to be P-small compressible if can be embedded in every of it is nonzero P-small submodule of . Equivalently, is P-small compressible if there exists a monomorphism , , is said to be P-small retractable if , for every non-zero P-small submodule of . Equivalently, is P-small retractable if there exists a homomorphism whenever as a generalization of compressible and retractable respectively and give some of their advantages characterizations and examples.