This paper introduces the concept of fuzzy σ-ring as a generalization of fuzzy σ-algebra and basic properties; examples of this concept have been given. As the first result, it has been proved that every σ-algebra over a fuzzy set x* is a fuzzy σ-ring-over a fuzzy set x* and construct their converse by example. Furthermore, the fuzzy ring concept has been studied to generalize fuzzy algebra and its relation. Investigating that the concept of fuzzy σ-Ring is a stronger form of a fuzzy ring that is every fuzzy σ-Ring over a fuzzy set x* is a fuzzy ring over a fuzzy set x* and construct their converse by example. In addition, the idea of the smallest, as an important property in the study of real analysis, is studied as well. Finally, the main goal of this paper is to study these concepts and give basic properties, examples, characterizations and relationships between them.
Details
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Volume
35
Issue Number
2
Choose Citation Style
Statistics
View publication
7
Abstract Views
300
Galley Views
280
Statistics
Study of Fuzzy σ-Ring and Some Related Concepts
Quick Preview PDF
Related publications