Let R be a commutative ring with identity and E be a unitary left R – module .We introduce and study the concept Weak Pseudo – 2 – Absorbing submodules as generalization of weakle – 2 – Absorbing submodules , where a proper submodule A of an R – module E is called Weak Pseudo – 2 – Absorbing if 0 ≠rsx A for r, s R , x E , implies that rx A + soc ( E ) or sx A + soc (E) or rs [ A + soc ( E ) E ]. Many basic properties, characterizations and examples of Weak Pseudo – 2 – Absorbing submodule in some types of modules are introduced .
Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
Equilrium, kinetic and mechanistic studies for thcoordination of
|
some amino acids "'AA'1
glycine, alanine, .a:ncl histidine, to Cr (Ill)
center of trans .[Cr(ox}2(B.2 0hr {TJ'} cornplein monderarely acidic
range ofpH=4.8-6-.7 ( p =Q.4M NaN03) are reported. The equili rium
c.onsta:nts at 25°C .were found logKequ.=4.95J ,5.206and5.128for glycine, alap.ine, md
... Show MoreMany of the key stream generators which are used in practice are LFSR-based in the sense that they produce the key stream according to a rule y = C(L(x)), where L(x) denotes an internal linear bit stream, produced by small number of parallel linear feedback shift registers (LFSRs), and C denotes some nonlinear compression function. In this paper we combine between the output sequences from the linear feedback shift registers with the sequences out from non linear key generator to get the final very strong key sequence
The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that .
In this paper, introduce a proposed multi-level pseudo-random sequence generator (MLPN). Characterized by its flexibility in changing generated pseudo noise (PN) sequence according to a key between transmitter and receiver. Also, introduce derive of the mathematical model for the MLPN generator. This method is called multi-level because it uses more than PN sequence arranged as levels to generation the pseudo-random sequence. This work introduces a graphical method describe the data processing through MLPN generation. This MLPN sequence can be changed according to changing the key between transmitter and receiver. The MLPN provides different pseudo-random sequence lengths. This work provides the ability to implement MLPN practically
... Show MoreLet R be an individual left R-module of the same type as W, with W being a ring containing one. W’s submodules N and K should be referred to as N and K, respectively that K ⊆ N ⊆ W if N/K <<_J (D_j (W)+K)/K, Then K is known as the D J-coessential submodule of Nin W as K⊆_ (Rce) N. Coessential submodule is a generalization of this idea. These submodules have certain interesting qualities, such that if a certain condition is met, the homomorphic image of D J- N has a coessential submodule called D J-coessential submodule.
Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.
Let R be a commutative ring , the pseudo – von neuman regular graph of the ring R is define as a graph whose vertex set consists of all elements of R and any two distinct vertices a and b are adjacent if and only if , this graph denoted by P-VG(R) , in this work we got some new results a bout chromatic number of P-VG(R).
This study investigates the impact of nonsurgical periodontal treatment (NSPT) on oral health-related quality of life (OHRQoL) in patients with periodontitis stages (S)2 and S3, and the factors associated with the prediction of patient-reported outcomes. Periodontitis patients (n = 68) with moderately deep periodontal pockets were recruited. Responses to the Oral Health Impact Profile (OHIP)-14 questionnaire and clinical parameters including plaque index, bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment loss (CAL) were recorded. All patients received supra- and subgingival professional mechanical plaque removal. All clinical parameters and questionnaire responses were recorded again 3 months after NSPT.
... Show More