Preferred Language
Articles
/
jih-2518
Fuzzy Semimaximal Submodules
...Show More Authors

     Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if

 the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are  introduced and given some  properties .

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Prime Submodules and Some Related Concepts
...Show More Authors

In this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule  of an -module  is called an approximaitly prime submodule of  (for short app-prime submodule), if when ever , where , , implies that either  or . So, an ideal  of a ring  is called app-prime ideal of  if   is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Extend Nearly Pseudo Quasi-2-Absorbing Submodules (II)
...Show More Authors

The concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules was recently introduced by Omar A. Abdullah and Haibat K. Mohammadali in 2022, where he studies this concept and it is relationship to previous generalizationsm especially  2-Absorbing submodule and Quasi-2-Absorbing submodule, in addition to studying the most important Propositions, charactarizations and Examples. Now in this research, which is considered a continuation of the definition that was presented earlier, which is the Extend Nearly Pseudo Quasi-2-Absorbing submodules, we have completed the study of this concept in multiplication modules. And the relationship between the Extend Nearly Pseudo Quasi-2-Absorbing submodule and Extend Nearly Pseudo Quasi-2-Abs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Approximaitly Quasi-Prime Submodules And Related Concepts
...Show More Authors

           Let R be  commutative Ring , and let T be  unitary left .In this paper ,WAPP-quasi prime submodules are introduced as  new generalization of Weakly quasi prime submodules , where  proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either  r tϵ C +soc   or  s tϵC +soc  .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.

View Publication Preview PDF
Crossref
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
For Some Results of Semisecond Submodules
...Show More Authors

  Let â„› be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.

In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pseudo Weakly Closed Submodules and Related Concepts
...Show More Authors

Let  be a commutative ring with identity, and  be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule  of an -module  is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule  of  with  is a submodule of  such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of  pseudo weakly closed

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weak Pseudo – 2 – Absorbing Submodules And Related Concepts
...Show More Authors

      Let  R  be a commutative ring  with identity  and  E  be a unitary left  R – module .We introduce  and study the concept Weak Pseudo – 2 – Absorbing submodules as  generalization of weakle – 2 – Absorbing submodules , where a proper submodule  A of  an  R – module  E is  called  Weak Pseudo – 2 – Absorbing  if   0 ≠ rsx   A   for  r, s  R , x  E , implies that  rx   A + soc ( E ) or  sx  A + soc (E)  or   rs  [ A + soc ( E ) E ]. Many basic  properties, char

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Some Results on Pure Submodules Relative to Submodule
...Show More Authors

Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.

View Publication Preview PDF
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Space of Primary La-submodules
...Show More Authors

     Suppose that F is a reciprocal ring which has a unity and suppose that H is an F-module. We topologize La-Prim(H), the set of all primary La-submodules of H , similar to that for FPrim(F), the spectrum of fuzzy primary ideals of F, and examine the characteristics of this topological space. Particularly, we will research the relation between La-Prim(H) and La-Prim(F/ Ann(H)) and get some results.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Italian Journal Of Pure And Applied Mathematics
Duality of St-closed submodules and semi-extending modules
...Show More Authors

The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.

View Publication Preview PDF
Scopus (2)
Scopus
Publication Date
Tue Jun 01 2021
Journal Name
Int. J. Nonlinear Anal. Appl.
Some types of fibrewise fuzzy topological spaces
...Show More Authors

The aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j = {δ, θ, α, p, s, b, β}.

Scopus (1)
Scopus Clarivate