In this paper, the main work is to minimize a function of three cost criteria for scheduling n jobs on a single machine. We proposed algorithms to solve the single machine scheduling multiobjective problem. In this problem, we consider minimizing the total completion times, total tardiness and maximum tardiness criteria. First a branch and bound (BAB) algorithm is applied for the 1//∑Ci+∑Ti+Tmax problem. Second we compare two multiobjective algorithms one of them based on (BAB) algorithm to find the set of efficient (non dominated) solutions for the 1//(∑Ci ,∑Ti ,Tmax) problem. The computational results show that the algorithm based on (BAB) algorithm is better than the other one for generated the total number of non dominated solutions.
In medical practice, nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to treat osteoarthritis and rheumatoid arthritis. Ibuprofen is a well-known NSAID, analgesic, and antipyretic medication. This chemical is an active ingredient of several oral medications that are offered in tablet, gel pellet, and syrup forms and has higher efficacy, tolerance, and side effect rates than other compounds, including pyrazolone derivatives. We present a unique plasma-assisted desorption/ionization mass spectrometry (PADI-MS) approach for improving pharmaceutically important solids using an ibuprofen tablet as a model solid sample. The goal of the study is to create an innovative mass spectrometric method that could be used for quick and accur
... Show MoreThis work aims to optimize surface roughness, wall angle deviation, and average wall thickness as output responses of ALuminium-1050 alloy cone formed by the single point incremental sheet metal forming process. The experiments are accomplished based on the use of a mixed level Taguchi experimental design with an L18 orthogonal array. Six levels of step depth, three levels of tool diameter, feed rate, and tool rotational speed have been considered as input process parameters. The analyses of variance (ANOVA) have been used to investigate the significance of parameters and the effect of their levels for minimum surface roughness, minimum wall angle deviation, and maximum average wall thickness. The results indicate that step depth and tool r
... Show MoreIn this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad. One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.
The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a
... Show MoreThree Saccharomyces cerevisiae isolates from different sources (China, Turkey and Egypt) were screened by culturing on solid state fermentation to select the most efficient isolate for invertase production. S. cerevisiae from China was high specific activity 34.7 U/mg. The optimum conditions for enzyme production from this isolate were determined by using a medium composed of wheat bran moisten with 1:0.5 (v:w) corn steep liquor as nitrogen source at initial pH 5.0 for 5 days at 30OC.
This paper proposes a new strategy to enhance the performance and accuracy of the Spiral dynamic algorithm (SDA) for use in solving real-world problems by hybridizing the SDA with the Bacterial Foraging optimization algorithm (BFA). The dynamic step size of SDA makes it a useful exploitation approach. However, it has limited exploration throughout the diversification phase, which results in getting trapped at local optima. The optimal initialization position for the SDA algorithm has been determined with the help of the chemotactic strategy of the BFA optimization algorithm, which has been utilized to improve the exploration approach of the SDA. The proposed Hybrid Adaptive Spiral Dynamic Bacterial Foraging (HASDBF)
... Show MoreThe conjugate coefficient optimal is the very establishment of a variety of conjugate gradient methods. This paper proposes a new class coefficient of conjugate gradient (CG) methods for impulse noise removal, which is based on the quadratic model. Our proposed method ensures descent independent of the accuracy of the line search and it is globally convergent under some conditions, Numerical experiments are also presented for the impulse noise removal in images.
In this paper activated carbon adsorbents produced from waste tires by chemical activation methods and application of microwave assisted KOH activation. The influence of radiation time, radiation power, and impregnation ratio on the yield and oil removal which is one of the major environmental issues nowadays and considered persistent environmental contaminants and many of them are suspected of being carcinogenic. Based on Box-Wilson central composite design, polynomial models were developed to correlate the process variables to the two responses. From the analysis of variance the significant variables on each response were identified. Optimum conditions of 4 min radiation time, 700 W radiation power and 0.5 g/g impregnation ratio
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
The objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
The maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol
... Show More