Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead of backpropagation as training algorithm for artificial neural network (ANN). Some other recent training-based Neural Networks, SVM, and KNN classifiers are used for comparison with the proposed classifier. The classifiers are utilized to classify image as normal or abnormal MRI human brain image. The results show that the proposed classifier is outperformed the other competing classifiers.
The financial analysis of the published financial statements is the means that enables businessmen, financial institutions, financial analysts and others to conduct their studies and conclusions to obtain information that helps them in the decision-making process, including decisions related to investment. National in making the decision on the investment activity, for the period from 2012 to 2018, through the information provided by the annual financial statements, by selecting a set of indicators provided by the financial statements, namely (liquidity ratio, activity percentage, profitability ratios) to measure the extent of this ability Indicators in determining their role in making an investment decision.