Preferred Language
Articles
/
jih-1628
A Smartphone -Based Model for Human Activity Recognition
...Show More Authors

Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classifier overperforms other classifiers that were examined in this research paper.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
Wasit Journal Of Computer And Mathematics Science
Cheating in E-learning from the perspective of lecturers within Iraqi universities
...Show More Authors

Online examination is an integral and vital component of online learning. Student authentication is going to be widely seen when one of these major challenges within the online assessment. This study aims to investigate potential threats to student authentication in the online examinations. Adopting cheating in E-learning in a university of Iraq brings essential security issues for e-exam . In this document, these analysts suggested  a model making use of a quantitative research style to confirm the suggested aspects and create this relationship between these. The major elements that might impact universities to adopt cheating electronics were declared as Educational methods, Organizational methods, Teaching methods, Technical meth

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Deep Convolutional Neural Network Architecture to Detect COVID-19 from Chest X-Ray Images
...Show More Authors

      Today, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are co

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Research - Granthaalayah
CALCULATION OF MULTIPLE MIXING RATIOS OF GAMMA RAYS FROM 𝑵𝒅(𝒏,𝒏)𝟔𝟎 𝟏𝟒𝟐−𝟏𝟓𝟎 ) 𝟔𝟎𝑵𝒅 𝟏𝟒𝟐−𝟏𝟓𝟎 INTERACTION
...Show More Authors

In the current research, multiple mixing ratios of gamma -transitions of the energy levels 60𝑁𝑑 142−150 isotopes populated in 𝑁𝑑(𝑛, 𝑛 ˊ 60 142−150 ) 60𝑁𝑑 142−150 interaction are calculated using the constant statistical tensor (CST) method. The results obtained are, in general, in good agreement or consistent, within the experimental error, with the results published in the previously researches. Existing discrepancies result from inaccuracies in the experimental results of previous works. The current results confirm the validity of the constant statistical tenser method of calculating the values of mixing ratios and its predictability of errors in experimental results

Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Determining the Level of Radioactivity and Hazard Index of the Soil of Babylon Batteries Second Plant in Waziriya
...Show More Authors

Thisre search was used in the short term method has been employed to determine the radioactive contamination from elements of natural and artificial radioactive.So, the natural gamma ray spectrum analysis technique using NaI(Ti) have been used to measure the The specific activity of the radioactoctive isotopes as following, U-238,Th-232 series of (Pb214,Pb212) respectively as wall as K-40 and industrial radioactive isotope Cs-137 was determined in the studied samples ,which are consisted of 30 samples from different locations and depth(10-50)cmthe samples of the soil batteries plant in Waziriya in Baghdad, as wall as Hazard index its found it within the permissible internationally.

View Publication Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Synthesizing, Structuring, and Characterizing Bioactivities of .Cr(III), La(III), and Ce(III) .Complexes with Nitrogen, Oxygen .and Sulpher donor bidentate Schiff base ligands
...Show More Authors

Two Schiff bases, namely, 3-(benzylidene amino) -2-thioxo-6-methyl 2,5-dihydropyrimidine-4(3H)-one (LS])and 3-(benzylidene amino)-6-methyl pyrimidine 4(3H, 5H)-dione(LA)as chelating ligands), were used to prepare some complexes of Cr(III), La(III), and Ce(III)] ions. Standard physico-chemical procedures including metal analysis M%, element microanalysis (C.H.N.S) , magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identify Metal (III) complexes and  Schiff bases (LS) and (LA). According to findings, a [Cr(III) complex] showed six coordinated octahedral geometry, while [La(III), and Ce(III) complexes]were structured with coordination number seven.  Schiff's bases a

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Review Of International Geographical Education Online
Quality of Transition to E-Learning under Corona pandemic: An Application Study in College of Administration and Economics, Baghdad University
...Show More Authors

E-learning is a lifeline for the educational process, which contributed to the sustainability of working educational organizations and prevented them from stopping, so the study came to measure the compatibility between E-learning quality dimensions (information technology, educational curricula, teaching methods, and intellectual capital of educational institution) as an independent variable, and educational services quality dimensions represented by (safety, tangibility, reliability and Confidence) as a dependent variable. The sample was 150 teachers was drawn from the College of Administration and Economics community of 293 teachers through the use of several statistical methods to measure the degree of correlation and impact between the

... Show More
Scopus
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Plants Leaf Diseases Detection Using Deep Learning
...Show More Authors

     Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes.  The data augmentation techniques have been used. In addition to dropout and weight reg

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Diagnosis of Coronavirus Using Conditional Generative Adversarial Network (CGAN)
...Show More Authors

     A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an  incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref