Preferred Language
Articles
/
jih-1441
On Double Stage Shrinkage Estimator For the Variance of Normal Distribution With Unknown Mean
...Show More Authors

     This paper is concerned with preliminary test double stage shrinkage estimators to estimate the variance (s2) of normal distribution when a prior estimate  of the actual value (s2) is a available when the mean is unknown  , using specifying shrinkage weight factors y(×) in addition to pre-test region (R).

      Expressions for the Bias, Mean squared error [MSE (×)], Relative Efficiency [R.EFF (×)], Expected sample size [E(n/s2)] and percentage of overall sample saved of proposed estimator were derived. Numerical results (using MathCAD program) and conclusions are drawn about selection of different constants including in the mentioned expressions. Comparisons between the suggested estimator with the classical estimator in the sense of Bias and Relative Efficiency are given. Furthermore, comparisons with the earlier existing works are drawn.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
American Journal Of Mathematics And Statistics
Preliminary Test Single Stage Shrinkage Estimator for the Scale Parameter of Gamma Distribution
...Show More Authors

Publication Date
Thu Aug 25 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Pretest Single Stage Shrinkage Estimator for the Shape Parameter of the Power Function Distribution
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Jan 02 2011
Journal Name
Education College Journal/al-mustansiriyah
Double Stage Shrinkage Estimators of Two Parameters Generalized Rayleigh Distribution
...Show More Authors

Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Efficient S.brunken Estimators For The Mean Of Normal Population With Kuown Variance
...Show More Authors

This  article  co;nsiders a shrunken  estimator  Â·Of  Al-Hermyari·   and

AI Gobuii (.1) to estimate  the mean (8) of a normal clistributicm N (8 cr4)  with  known variance  (cr+),  when  <:I    guess value (So) av11il ble about the mean (B) as· an initial estrmate. This estimator is shown to be

more efficient tl1an the class-ical estimators  especially when 8 is close to 8•. General expressions .for bias and MSE -of considered  estitnator are gi 'en, witeh  some examples.  Nut.nerical cresdlts, comparisons  and

conclusions ate reported.

View Publication Preview PDF
Publication Date
Thu Jun 02 2011
Journal Name
Ibn Al-haithem Journal For Pure And Applied Sciences
On modified pr-test double stage shrinkage estimators for estimate the parameters of simple linear regression model
...Show More Authors

Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Estimator for the Scale Parameter of the Normal Distribution Under Different Prior Distributions
...Show More Authors

In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 02 2012
Journal Name
Education College Journal/al-mustansiriyah University
On Significance Testimator in Pareto Distribution Via Shrinkage Technique
...Show More Authors

In this paper, preliminary test Shrinkage estimator have been considered for estimating the shape parameter α of pareto distribution when the scale parameter equal to the smallest loss and when a prior estimate α0 of α is available as initial value from the past experiences or from quaintance cases. The proposed estimator is shown to have a smaller mean squared error in a region around α0 when comparison with usual and existing estimators.

Preview PDF
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economic And Administrative Science
On Shrinkage Estimation for Generalized Exponential Distribution
...Show More Authors

Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
International Journal Of Data Analysis Techniques And Strategies
A class of efficient and modified testimators for the mean of normal distribution using complete data
...Show More Authors

View Publication
Scopus (9)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Shrinkage Estimation for R(s, k) in Case of Exponentiated Pareto Distribution
...Show More Authors

   This paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.

View Publication Preview PDF
Crossref (4)
Crossref