This research involves an indirect Fluorophotometric method for the determination of microgram amount of oxymetazoline hydrochloride in the concentration range 0.1-5.0 g/ml. The method is based on the oxidation of the drug by cerium sulphate solution which is acidic medium where Ce IV is reduced to Ce III which can be excited at 259 nm to give an emitted light at 377 nm which is directly proportional to the concentration of Ce III which is equivalent to Ce IV that is needed to oxidize the studied drug. The average recovery of the method is 100.19% and relative standard deviation (RSD) < 0.37% . The method have been successfully applied to the determination of the studied drug in its pure and pharmaceutical preparations and it was found that the results obtained are agree favorably with certified values of pharmaceutical preparations and also with result obtained by standard addition method.
Spectrophotometric methods were developed for the determination of rantidine-HCl in pharmaceutical tablets. These methods were based on the reaction of DDQ and p-chloranil with rantidine-HCl, resulting in the formation of an orange-red and purple colored products which are quantified spectrophotometrically at 460 and 540nm in DDQ and p-chloranil, respectively. A graph of absorbance versus concentration show that Beer’s law is obeyed in a concentration ranges of 20-160 and (30-120)ïg/ml with molar absorptivities of 2.631 x 103 and 1.052 x 103l .mol-1-cm-1 for DDQ and p-chloranil, respectively. The optimum conditions for color development are described and
... Show More A simple, accurate and precise spectrophotometric method has been proposed for the determination of Mefenamic acid(MA) in dosage forms. Proposed method based on the reaction of cited drug with 1,2-Naphthoquinone-4-Sulfonic sodium (NQS). The optimum experimental condition have been studied. Beer's Law is obeyed in the concentration range 0.5-10.0 µg/mL at 450nm with detection limit of 0.189µg/mL. Effect of pH, reaction time, and volume of NQS on the determination of Mefenamic acid, have been examined. The proposed method has been successfully applied for the determination of Mefenamic acid in pharmaceutical preparations.
A simple, accurate, and cost-efficient UV-Visible spectrophotometric method has been developed for the determination of naphazoline nitrate (NPZ) in pure and pharmaceutical formulations. The suggested method was based on the nucleophilic substitution reaction of NPZ with 1,2-naphthoquinone-4-sulfonate sodium salt in alkaline medium at 80°C to form an orange/red-colored product of maximum absorption (λmax) at 483 nm. The stoichiometry of the reaction was determined via Job's method and limiting logarithmic method, and the mechanism of the reaction was postulated. Under the optimal conditions of the reaction, Beerʼs law was obeyed within the concentration range 0.5–50 μg/mL, the molar absorptivity value (ε) was 5766.5 L × mol–1 × c
... Show MoreA simple and accurate method to determinate furosemide (FUR) based on converting the secondary amine to primary amine with acidic hydrolysis then azotization by nitrous acid and coupled with resorcinol as a coupling agent in aqueous medium at pH 13. The optical characteristic like beers law limit found to be (0.25-2.5) μg.ml−1, detection and quantification limits (0.0196) (0.0654) μg.ml−1respectivly and Sandel sensitivity was 0.006738 μg.cm−2. The least-square method was used to evaluate the regression equation and the correlation coefficient. The resulted azo dye has a maximum absorbance at 430 nm with light oran
This approach was developed to achieve an accurate, fast, economic and sensitivity to estimation of diphenhydramine Hydrochloride. The dye that produced via reaction between diphenhydramine HCl with thymol blue in acidic medium pH ≈ 4.0. The ion pair method include an optimization study to formed yellowcolored that extraction by liquid – liquid method. The product separated of complexes by using by chloroform solution measured spectrophotometry at 400 nm. The analysis data at optimum conditions showed that linearity concentration in a range of calibration curve 1.0 – 50 μg /mL, limit of detectionand limit of quantification 0.0786 and 0.2358 μg/mL respectively. The molar absorptivity and Sandell’s sensitivity were 1.8 × 10 -4 L/mo
... Show MoreNew, easy, simple, and fast spectral method for estimation of sulfamethoxazole (SMZ) in pure and pharmaceutical forms. The proposed method is based on the azotization of the drug compound by sodium nitrite in an acidic medium and then coupling with 2,3dimethyl phenol reagent (DMP) in a basic medium to yield an orange-coloured dye which shows λmax at 402 nm. Different affection of the optimization reaction has been completed, following the classical univariate sequence. The concentration of sulfamethoxazole about (1-15) μg. mL-1 with molar absorptivity of (14943.461) L.mol1 .cm-1 that obeyed Beer’s law. The detection and quantification limits were (0.852, 2.583) μg. mL-1 respectively, while the value of Sandell’s sensitivity (
... Show MoreA simple, and rapid spectrophotometric method for the estimation of paracetamol has been developed. The methods is based on diazotisation of 2,4-dichloroaniline followed by a coupling reaction with paracetamol in sodium hydroxide medium. All variables affecting the reaction conditions were carefully studied. Beer's law is obeyed in the concentration range of 4-350 ?gml?1 at 490 nm .The method is successfully employed for the determination of paracetamol in pharmaceutical preparations. No interferes observed in the proposed method. Analytical parameters such as accuracy and precision have been established for the method and evaluated statistically to assess the application of the method.
A simple and sensitive spectrophotometric method is described for the determination of diclofenac sodium (DCL), in pure form and pharmaceutical formulations. The method is based on the oxidation of 2,4-dinitrophenylhydrazine (2,4-DNPH) and coupling of the oxidized product with DCL in alkaline medium to give intensively colored chromogen which exhibits maximum absorption (λmax) at 600 nm, and the concentration of DCL was determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, modified simplex method (MSM) has been applied in optimization of the variables affecting the color producing reaction. Beer’s law is obeyed in the
... Show More