Preferred Language
Articles
/
jih-1215
On Weakly Prime Submodules
...Show More Authors

Let R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever  r  R,  x  M, 0  r x  N implies  x  N  or  r  (N:M). In fact this concept is a generalization of the concept weakly  prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered. 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
J-Small Semiprime Submodules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a commutative ring with identity and <italic>Y</italic> be an unitary <italic>R</italic>-module. We say a non-zero submodule <italic>s</italic> of <italic>Y</italic> is a <italic>J –</italic> small semiprime if and only if for whenever <italic>i</italic> ∈ <italic>R, y ∈ Y,(Y)</italic> is small in <italic>Y</italic> and <italic>i<sup>2</sup>y</italic> ∈ <italic>S</italic> + <italic>Rad (Y)</italic> implies <italic>iy</italic> ∈ <italic>S.</italic> In this paper, we investigate some properties and chara</p> ... Show More
Scopus Crossref
Publication Date
Sun Oct 27 2019
Journal Name
Iraqi Journal Of Science
I-Nearly Primary Submodules
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Quasi-primary Submodules
...Show More Authors

      In this paper, we introduce and study the notation of approximaitly quasi-primary submodules of a unitary left -module  over a commutative ring  with identity. This concept is a generalization of prime and primary submodules, where a proper submodule  of an -module  is called an approximaitly quasi-primary (for short App-qp) submodule of , if , for , , implies that either  or , for some . Many basic properties, examples and characterizations of this concept are introduced.

View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Physics: Conference Series
Spectrum of Secondary Submodules
...Show More Authors

Scopus (1)
Scopus
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Semi -T- Small Submodules
...Show More Authors

Let  be a ring with identity and  be a submodule of a left - module . A submodule  of  is called - small in  denoted by , in case for any submodule  of ,  implies .  Submodule  of  is called semi -T- small in , denoted by , provided for submodule  of ,  implies that . We studied this concept which is a generalization of the small submodules and obtained some related results

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
Quasi-Radical Semiprime Submodules
...Show More Authors

      In this paper, we introduce the concept of a quasi-radical semi prime submodule. Throughout this work, we assume that    is a commutative ring with identity and  is a left unitary R- module. A  proper submodule  of  is called a quasi-radical semi prime submodule (for short Q-rad-semiprime), if     for   ,   ,and then  . Where   is the intersection of all prime submodules of .

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Derivable Maps of Prime Rings
...Show More Authors

Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e  0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR  R and Re  R .
(ii) xR  0 implies x  0 .
(iii ) eRx  0 implies x  0( and hence Rx  0 implies x  0) .
(iv) exeR(1 e)  0 implies exe  0 .
If D is a derivable map of R satisfying D(R )  R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.

View Publication Preview PDF
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dual Notions of Prime Modules
...Show More Authors

       Let R be a commutative ring with unity .M an R-Module. M is called coprime module     (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M   In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
On Semigroup Ideals and Right n-Derivation in 3-Prime Near-Rings
...Show More Authors

 The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Commutativity Results for Multiplicative (Generalized) (α,β) Reverse Derivations on Prime Rings
...Show More Authors

Let  be a prime ring,  be a non-zero ideal of  and   be automorphism on. A mapping  is called a multiplicative (generalized)  reverse derivation if  where  is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized)  reverse derivation  satisfying any one of the properties:

 

 

 for all x, y  

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref