Preferred Language
Articles
/
jih-1044
Studying of Optical System Includes Elliptical Aperture Point Spread Function

In this work, optical system with elliptical aperture using point spread function was studied. This is due to its comparison with an optical system with a circular aperture. The present work deals with the theoretical study of intensity distribution within the image. In this work, a special formula was derived which is called the point spread function (PSF) by using a pupil function technique. The work deals with the limited optical system diffraction only (ideal system), and the system with focal shift. Also a graphic relation was founded between eccentricity and the best of focal depth given to at least (80%) of intensity.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying Of Image Intensity Distribution Of Elliptical Object (Elliptical Spread Function)

      In this work, a new formula of intensity distribution in image plane of elliptical object was founded (Elliptical spread function), by using optical system including circular aperture. The Gauss quadrature method of numerical integral was used for calculating equation's integrals. Curves are shown for system having focal error and intensity distribution in focal axis.  

View Publication Preview PDF
Publication Date
Sat Mar 26 2022
Journal Name
Neuroquantology
Efficiency Evaluation of Optical System Includes Different Stop Apertures When Using Relative Moving Factor

In this work, optical system with different aperture shapes (circular, square, elliptical and triangle aperture) has been used for efficiency evaluation when the system involved moving factor in ideal case (aberration free). The optical system evaluate far moving object, therefore the image forming at image plane due to point spread function (image formula of incoherently illuminated point object). A mathematical treatment has been used to getting results by Gaussian numerical calculations method. The results show priority of circular aperture when optical system that submits of moving factor.

Crossref
View Publication
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluating The Cumulative Line Spread Function For ZnSe Infrared Material In The Optical Design of Lenses

The present research aims to study the efficiency of infrared material lenses compared with the glass material lenses by determining LSF and CLSF for perfect optical system having circular aperture, Arnorphous(1,2) material transmitting infrared radiation (AMTIR) is used for infrared window, lenses and prisms when transmission in the range of 1-14 pm is desired in application like thermal imaging, astronomical and forward looking infrared (FLIR), AMTIR is the low thermal change in refractive index 72 * 10-6 /C ° is an advantage in lenses design to prevent defocussing.

View Publication Preview PDF
Publication Date
Thu Feb 29 2024
Journal Name
Iraqi Journal Of Science
Finding the Exact Solution of Kepler’s Equation for an Elliptical Satellite Orbit Using the First Kind Bessel Function

     In this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel

... Show More
Scopus Crossref
View Publication
Publication Date
Fri Feb 04 2022
Journal Name
Neuroquantology
Studying Optical Properties of Quantum Dot Cylindrical Fresnel Lens

An optical system including quantum dot cylindrical Fresnel lens (CFL) has been designed by using Zemax optical designing program. Quantum dot cylindrical Fresnel lens has a relatively small thickness compared to conventional lenses and high absorbance. It contains grooves in the form of parallel lines, and each groove represents an individual lens that works to change the path of light falling on it to a single focal line. (CFL) is characterized by its small focal length despite its large area and small thickness, due to the nature of its design that gives this feature, which is applied in many optical systems (imaging and non- imaging system). In this paper, the visual properties of the (CFL) were studied as it is one of the impor

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Tue Dec 15 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu May 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modulation Function Calculation For Optical Semiconductor Fractal Modulator

   The research  includes the study and calculation of the modulation function of Optical Semiconductor Fractal  Modulator and spatial frequency for different values of Silicon modulator transmittance percentage(10%,35%,45%,58%),it found the relation between the modulation function of Silicon and spatial frequency, the exponential relation of all values of the transmittance , the best state of modulation function when the value of transmittance is T=58% ,also the research includes the study of the relation of transmittance with different values of refractive index of Silicon . So the research involves building a computer program of output data which would relate to fractal optical modulation made of semiconductor mate

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Studying The Optical Properties of CdO and CdO: Bi Thin Films

Cadmium Oxide and Bi doped Cadmium Oxide thin films are prepared by using the chemical spray pyrolysis technique a glass substrate at a temperature of (400?C) with volumetric concentration (2,4)%. The thickness of all prepared films is about (400±20) nm. Transmittance and Absorbance spectra are recorded in the wave length ranged (400-800) nm. The nature of electronic transitions is determined, it is found out that these films have directly allowed transition with an optical energy gap of (2.37( eV for CdO and ) 2.59, 2.62) eV for (2% ,4%) Bi doped CdO respectively. The optical constants have been evaluated before and after doping.

Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Synthetic Aperture Radar Image Classification: a Survey: Survey

In this review paper, several studies and researches were surveyed for assisting future researchers to identify available techniques in the field of classification of Synthetic Aperture Radar (SAR) images. SAR images are becoming increasingly important in a variety of remote sensing applications due to the ability of SAR sensors to operate in all types of weather conditions, including day and night remote sensing for long ranges and coverage areas. Its properties of vast planning, search, rescue, mine detection, and target identification make it very attractive for surveillance and observation missions of Earth resources.  With the increasing popularity and availability of these images, the need for machines has emerged to enhance t

... Show More
Scopus (6)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
The Effect of Polarization Flipping Point on Polarization Dynamics by Optical Feedback Technique

The effect of the optical feedback on the polarization flipping point and hysteresis loop was studied. The polarization flipping occurred at all angles between the polarizer axis and the laser polarization. The polarization flipping point changed by an optical feedback occurred at angles from 0° to 90°. Ability of choosing or controlling the laser polarization was determined by changing the direction of vertical and horizontal polarization by polarizer rotation in the external cavity from 0° to 90°.

Scopus Crossref
View Publication Preview PDF