Coupling reaction of m-and p- amino acetophenone and p-amino benzoic acid with (L- Histidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass spectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed was studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1× 10-4- 3 × 10-4M). High molar absorbtivity of the complex solutions was observed. The stability constant of the complexes have also been studied. In addition the dyeing performance of the prepared ligands and some of their complexes was applied on cotton fabric. The dyes were tested for light and detergent fastness. Biological activity of the ligands and complexes against three selected types of bacteria was also examined. Some of the complexes exhibit good bacterial activities.
Coupling reaction of m-and p- amino acetop henone and p-amino benzoic acid with (LHistidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass sp ectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M (L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the com
... Show MoreSome azo compounds were prepared by coupling the diazonium salts of amines with 2,4-dimethylphenol The structure of azo compounds were determined on the basis of elemental analyses, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Complexes of nickel(II) and copper(II) have been synthesized and characterized. The composition of complexes has been established by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity magnetic susceptibility measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observ
... Show MoreCoupling reaction of 4-aminoantipyrene with 8-hydroxyqunoline gave the new bidentate azo ligand 5-(4-antipyrene azo)-8-hydroxyqunoline. Treatment of this ligand with the following metals ions (MnII, CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio yielded a series of neutral complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, FT.IR, UV-Vis spectroscopic as well as magnetic susceptibility and conductivity measurements. Chloride ion content were also evaluated by (Mohr Method). From above data, the proposed molecular structure for these complexes as octahedral geometry.
New Azo ligands HL1 [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] and HL2 [3-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-2-hydroxy-1-naphthaldehyde] have been synthesized from reaction (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol) for HL1 and (4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one) for HL2. Then, its metal ions complexes are synthesized with the general formula; [CrHL1Cl3(H2O)], [VOHL1(SO4)] [ML1Cl(H2O)] where M = Mn(II), Co(II), Ni(II) and Cu(II), and general formula; [Cr(L2)2 ]Cl and [M(L2)2] where M = VO(II), Mn(II), Co(II), Ni(II) and Cu(II) are reported. The ligands and their metal complexes are characterized by phisco- chemical spectroscopic
... Show MoreCoupling reaction of 4-amino antipyrene with 2,6-dimethyl phenol gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII, ZnII, CdII, and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UVVis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied followin
... Show MoreCoupling reaction of 2-amino benzoic acid with phenol gave the new bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, FT-IR and UV-Vis spectroscopic technique. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentr
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
A tetradentate (N2O2) Schiff base (H2Ldfm) was successfully synthesized via condensation of curcumin / diferuloylmethane (dfm) and L-leucine amino acid (HL). There were three different methods that used for synthesizing H2Ldfm; (refluxing, grading, and fusion). Ten different metal complexes were also successfully synthesized by combination of the Schiff base (H2Ldfm) and 1,10-phenanthroline (phen) ligand to form a hexadentate (N4O2) mixed ligands (Ldfm , phen) with ten different metal salts (M) where{ M= Al(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Ag(I), Cd(II), Hg(II), and Pb(II)}. The molar ratio of reactants was (1:1:1) (M: H2Ldfm : phen). The new Schiff base and its new complexes were characterized by different physicochemical tec
... Show More