A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjusted) values.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
Magnesium-doped Zinc oxide (ZnO: Mg) nanorods (NRs) films and pure Zinc oxide deposited on the p-silicon substrates were prepared by hydrothermal method. The doping level of the Mg concentration (atoms ratio of Mg to Zn was chosen to be 0.75% and 1.5%. X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) were performed to characterize the prepared films. X-ray diffraction analysis showed a decrease in the lattice parameters of the Mg-doped ZnO NRs. Under 10V applied bias voltage, the responsivity of p-n junction UV photodiode based on pure ZnO and Mg: ZnO with doping ratio (0.75% and 1.5%) was 0.06 A/W and (0.15A/W and 0.27A/W) at UV illumination of wavelength 365 nm respectively, 0.071 A/W and (0.084A/W and 0.11A/W) fo
... Show MoreThe aim of this paper is to study the combined effects of the concentration and the thermo-diffusion on the unsteady oscillation flow of an incompressible Carreau fluid through an inclined porous channel. The temperature is assumed to affect exponentially the fluid's viscosity. We studied fluid flow in an inclined channel under the non-slip condition at the wall. We used the perturbation series method to solve the nonlinear partial differential equations. Numerical results were obtained for velocity distribution, and through the graphs, it was found that the velocity of fluid has a direct relation with Soret number, Peclet number, and Grashof number, while it has a reverse variation with chemical reaction, Schmidt number, frequency of os
... Show MoreTransformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe
... Show MoreEnhanced Thematic Mapper Plus (ETM+) onboard the Landsat-7 remotely sensor satellite was launched on 15 April 1999. On May 31, 2003, image acquisition via the ETM+ was greatly impacted by the failure of the system’s Scan Line Corrector (SLC). Consequently, the ETM+ has lost approximately 22% of the data due to the increased scan gap. In this work, several gap-filling methods will be proposed to restore the ETM+ image malfunctions. Some of the proposed methods will be carried by estimating the missed pixel’s values from the same image pixel’s neighborhood, while others will utilize the pixel values extracted from different temporal scene acquired in different time. Mean average filter, median filter, midpoint filter, and several int
... Show MoreIn this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.
Estimation stage is one of most important in process of selecting and identification for fit model, this model gives a best results if the good methods of estimation are depended on, one of those methods is Bayes method for estimation the parameters, it puts an assumption that parameter have a distribution.
This paper studies the robustness of estimators of empirical Bayes to know the properties of those estimators.