Preferred Language
Articles
/
jeasiq-1642
Accounting Mining Data Using Neural Networks (Case study)
...Show More Authors

Business organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a technique that aims at extracting knowledge from huge amounts of data, based on mathematical algorithms, which are the basis for data mining. They are derived from many sciences such as statistics, mathematics, logic, learning science, artificial intelligence, expert systems, form-recognition science, and other sciences, which are considered smart and non-traditional.

The problem of the research states that the steady increase in the amount of data, as well as the emergence of many current areas that require different data due to the contemporary environment of business organizations today, make information systems unable to meet the needs of these current organizations, and this applies exactly to accounting information systems as they are the main system in business organizations today. These systems have been designed to meet specific needs that make it impossible today to meet the different needs according to the contemporary environment of business organizations today, as well as failing to deal with the amount of data generated by the information technologies.

The research proposes two main hypotheses. First, the adoption of accounting data mining leads to providing data that the accounting information system was unable to provide before, as well as to shortening the time and effort required to obtain it. Second, the adoption of accounting exploration of data enables the adoption of artificial intelligence methods in processing such data to provide useful information to rationalize decisions.

The research leads to a number of conclusions, including that the steady increase in the amount of data in general, and the accounting data in particular, makes dealing with traditional frameworks a very difficult issue and leads to loss of time and effort during extracting information. In addition, the emergence of many current variables as a result of changes in the work environment requires the presence of technical tools, which have enough flexibility to deal with them. Moreover, data mining tools have the ability to derive relationships based on their existing databases that were not available before.

The research presents a number of recommendations, most important of which is the need to adopt the model presented by the research, i.e., Multilayer Perception, a network that exists within the (SPSS) program, which allows the possibility to use this network easily in rationalizing the decision to choose implemented projects in the provincial councils

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Improved Method to Correlate and Predict Isothermal VLE Data of Binary Mixtures
...Show More Authors

Accurate predictive tools for VLE calculation are always needed. A new method is introduced for VLE calculation which is very simple to apply with very good results compared with previously used methods. It does not need any physical property except each binary system need tow constants only. Also, this method can be applied to calculate VLE data for any binary system at any polarity or from any group family. But the system binary should not confirm an azeotrope. This new method is expanding in application to cover a range of temperature. This expansion does not need anything except the application of the new proposed form with the system of two constants. This method with its development is applied to 56 binary mixtures with 1120 equili

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
International Journal Of Inventive Engineering And Science,
Increase the Capacity Amount of Data Hiding to Least Significant BIT Method
...Show More Authors

Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Feb 16 2017
Journal Name
Signal, Image And Video Processing
Enhancing Prony’s method by nuclear norm penalization and extension to missing data
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Temperatture esttiimattiion off EXDRA and SSUMI dwarff Nova systtems from spectroscopic data
...Show More Authors

The seasonal behavior of the light curve for selected star SS UMI and EXDRA during outburst cycle is studied. This behavior describes maximum temperature of outburst in dwarf nova. The raw data has been mathematically modeled by fitting Gaussian function based on the full width of the half maximum and the maximum value of the Gaussian. The results of this modeling describe the value of temperature of the dwarf novae star system leading to identify the type of elements that each dwarf nova consisted of.

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2010
Journal Name
Ibn Al- Haitham J. Fo R Pure & Appl. Sci
Evaluation of The Nuclear Data on(α,n)Reaction for Natural Molybdenum
...Show More Authors

The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element

... Show More
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Investigating the quality of open street map roads data inside Baghdad city
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Applied Mathematical Modelling
Identification of a multi-dimensional space-dependent heat source from boundary data
...Show More Authors

View Publication
Scopus (16)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Crossref
Publication Date
Thu Mar 19 2015
Journal Name
Al-academy
Transformations in The Process of Mass Communication Using the International Network of Information (Internet): انتصار رسمي موسى
...Show More Authors

Summarized the idea of research is marked by "changes in the process of mass communication by using the international network of information" by specifying what data networking and mass communication is the transformation processes in the mass communication network where research aims to:1. Diagnostic data and transformations in the process of mass communication network.2. Provide a contact form commensurate with the characteristic mass of the International Network of electronic information, and research found to provide a communicative model called the (human contact network). In short (HCN) Humanity Communication Net also reached conclusions concerning the search process and communicative transformations and changes that have taken pla

... Show More
View Publication Preview PDF
Crossref