After the year 2003, Iraq went through multiple waves of violence and at different levels on the security, intellectual, political and social levels. Behind that stood several motives and incentives to enable violence that represented the first axis of research, the most important of which was the political motives that circulated an atmosphere that politics against society and transformed power into a field of political brutality against the individual and the group at once. There are also cultural, intellectual, media and economic motives such as weak cultural independence, poverty, marginalization, unemployment and want, and the absence of a media discourse that rejects violence but incites it, on the other hand, there are ways to confront those motives that Iraq needs, including political, intellectual, cultural, media, and economic, which prevent violence and extremism and achieve peace and stability, which will be the focus of the second research.
Azo dyes like methyl orange (MO) are very toxic components due to their recalcitrant properties which makes their removal from wastewater of textile industries a significant issue. The present study aimed to study their removal by utilizing aluminum and Ni foam (NiF) as anodes besides Fe foam electrodes as cathodes in an electrocoagulation (EC) system. Primary experiments were conducted using two Al anodes, two NiF anodes, or Al-NiF anodes to predict their advantages and drawbacks. It was concluded that the Al-NiF anodes were very effective in removing MO dye without long time of treatment or Ni leaching at in the case of adopting the Al-Al or NiF-NiF anodes, respectively. The structure and surface morphology of the NiF electrode were inves
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreThe current issues in spam email detection systems are directly related to spam email classification's low accuracy and feature selection's high dimensionality. However, in machine learning (ML), feature selection (FS) as a global optimization strategy reduces data redundancy and produces a collection of precise and acceptable outcomes. A black hole algorithm-based FS algorithm is suggested in this paper for reducing the dimensionality of features and improving the accuracy of spam email classification. Each star's features are represented in binary form, with the features being transformed to binary using a sigmoid function. The proposed Binary Black Hole Algorithm (BBH) searches the feature space for the best feature subsets,
... Show MoreAtenolol was used with povidone iodine to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between atenolol and povidone iodine in an aqueous medium. Optimum parameters was studied to increase the sensitivity development of method. Calibration graph was linear in the range of 2-19 mmol/L for cell A and 5-19 mmol/L for cell B. Limit of detection 146.4848 ng/55 µL and 2.6600 µg/200 µL respectively to cell A and cell B. Correlation coefficient (r) 0.9957 for cell A and 0.9974 for cell. Relative standard deviation (RSD %) was lower than 1%, (n=8) for the determination of
... Show MoreNonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a
... Show More