The present study investigates the use of intensifiers as linguisticdevices employed by Charles Dickens in Hard Times. For ease of analysis, the data are obtained by a rigorous observation of spontaneously occurring intensifiers in the text. The study aims at exploring the pragmatic functions and aesthetic impact of using intensifiers in Hard Times.The current study is mainly descriptive analytical and is based on analyzing and interpreting the use of intensifiers in terms ofHolmes (1984) andCacchiani’smodel (2009). From the findings, the novelist overuses intensifiers to the extent that 280 intensifiers are used in the text. These intensifiers(218) are undistinguished emotions constituting 78%,(38)are personalforming 13.5% and (24) intensifiers are specific emotions comprising 8.5%.Also, the analysis shows that 56 different intensifiers are employed in the text with great variety in frequency in the most frequent intensifier is ‘very’, used 90 times, followed by ‘so’, 82 times, and then ‘too’, 15 times as well as other intensifiers such as only, highly, eminently, quite, pretty, most, much and perfectly. The rest of the intensifiers are scarcely used. The study significantly concludes that the use of intensifiers helps contribute to typifying the downside and suffering of people in the Victorian era as such use moves the plot forward so as to discern the way social, economic and political circumstances affect the way the novelist uses intensifiers.This stems from the observation that the very low ratio of personal intensifiers13.5% reflects little subjectivity, if any, and goes in line with the main theme of the novel which is “the people in the Victorian era are like machines without human feelings.” The use ofintensifiers assists in unraveling of the interpretation of Dickens’ feelings, impressions, emotions and attitudestowards the Victorian society and makes the later apt to be criticized.
In this paper , certain subclass of harmonic multivalent function defined in the exterior of the unit disk by used generalize hypergeometric functions is introduced . In This study an attempting have been made to investigate several geometric properties such as coefficient property , growth bounds , extreme points , convolution property , and convex linear combination .
One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R
... Show MoreThe attribute quality control charts are one of the main useful tools to use in control of quality product in companies. In this paper utilizing the statistical procedures to find the attribute quality control charts for through fuzzified the real data which we got it from Baghdad Soft Drink Company in Iraq, by using triangular membership function to obtain the fuzzy numbers then employing the proposed ranking function to transform to traditional sample. Then, compare between crisp and fuzzy attribute quality control.
In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
Most of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where 0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta
... Show MoreThe main objective of" this paper is to study a subclass of holomrphic and univalent functions with negative coefficients in the open unit disk U= defined by Hadamard Product. We obtain coefficients estimates, distortion theorem , fractional derivatives, fractional integrals, and some results.
Structure of network, which is known as community detection in networks, has received a great attention in diverse topics, including social sciences, biological studies, politics, etc. There are a large number of studies and practical approaches that were designed to solve the problem of finding the structure of the network. The definition of complex network model based on clustering is a non-deterministic polynomial-time hardness (NP-hard) problem. There are no ideal techniques to define the clustering. Here, we present a statistical approach based on using the likelihood function of a Stochastic Block Model (SBM). The objective is to define the general model and select the best model with high quality. Therefor
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreIn this present paper, we obtain some differential subordination and superordination results, by using generalized operators for certain subclass of analytic functions in the open unit disk. Also, we derive some sandwich results.
In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show More