The current research aims to examine the effect of the rapid learning method in developing creative thinking among second-grade female students in the subject of history. Thus, the researcher has adopted an experimental design of two groups to suit the nature of the research. The sample of the study consists of (36) randomly selected students from Al-Shafaq Secondary School for Women, which are divided randomly into two groups. The first group represents the experimental; it includes (31) students who studied the subject of history using the quick learning method. The second group, on the other hand, is the control group, which consists of (32) students, who studied the same subject using the traditional way. Before starting with the experiment, the researcher was keen to ensure that the students of the two research groups are statistically equal in a number of variables that are believed to have an effect on the safety of the experiment. Such variables involve: (the chronological age of the students calculated in months, intelligence, a pre-test for creative thinking, the academic level of the parents). To achieve the objective of the study, the researcher must use Tor Anas’ test that was Arabized by Sayed Khairallah to measure the creative thinking, and employ it for the contents of the Arab-Islamic history book. Accordingly, the researcher constructed (10) testing items for each of the following skills (fluency, flexibility, originality, and sensitivity to problems) to have a total of (40) items. Moreover, the performance of the students has been evaluated by identifying and treating their weak points to improve their level of knowledge, meeting as a result the already set objective and employing the students’ mental energies in creating a motivating atmosphere for creative thinking. The study has finally concluded that the quick learning strategy requires more effort and skill on the part of the teacher than when using the usual methods of teaching. It has further made the students more motivated, more willing to participate in the history lessons, and this has thus developed their creative thinking.
Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreThe diseases presence in various species of fruits are the crucial parameter of economic composition and degradation of the cultivation industry around the world. The proposed pear fruit disease identification neural network (PFDINN) frame-work to identify three types of pear diseases was presented in this work. The major phases of the presented frame-work were as the following: (1) the infected area in the pear fruit was detected by using the algorithm of K-means clustering. (2) hybrid statistical features were computed over the segmented pear image and combined to form one descriptor. (3) Feed forward neural network (FFNN), which depends on three learning algorithms of back propagation (BP) training, namely Sca
... Show Moreيهدف هذا البحث إلى تحليل محتوى كتابي الحاسوب للمرحلة الإعدادية في جمهورية العراق وفقاً للتفكير المنطقي، واتبعت الباحثة منهج البحث الوصفي التحليلي، وتم توظيف أداة تحليل المحتوى، التي صُمِّمت وفقاً للعمليات العقلية المتضمنة في التفكير المنطقي بحسب العالم بياجيه ( Piaget )، واعتماد وحدة الفكرة (الصريحة) في عملية التحليل. تبين من نتائج هذا البحث أنَّ نسبة تضمين مهارات التفكير المنطقي في محتوى كتابي الحاسوب للمرحل
... Show Moreان السبب الرئيسي لاختيار الموضوع كونه من الاساليب الادارية الحديثة التي تهدف الى انجاح المنظمة او الشركة المبحوثة, اذ تمثلت مشكلة البحث في ما دور الادارة بالرؤية المشتركة في تعزيز التسويق الابداعي بالشركة المبحوثة, يهدف البحث الى تسليط الضوء على مفهوم الادارة بالرؤية المشتركة وانعكاساتها على التسويق الابداعي للمنظمة ، باعتبارها منهج اداري حديث يسهم في تغيير وتجديد وتطوير واقع المنظمة المبحوثة( الشرك
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More