Background: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has a substantial influence on the hematological system and hemostasis, thus deviations from normal levels of laboratory tests, including the blood and saliva test show that specific testing for detecting COVID-19 infection is required. Conclusions: The blood and saliva tests aid in the clinical monitoring of the patient's health. It has advantages such as the following: it has non-invasive properties, low cost, and good stability, addition to minimum risk of infection transport.
This work is an experimental study conducted to study the effects of iron oxide dust particles (Fe2O3) on the characteristics of DC discharge plasma in argon gas under vacuum. Electron temperature ( ) and electron density (ne) were calculated by Boltzmann plots and Stark broadening, respectively. The results show that both the electron density and plasma frequency ( ) increased with the operating pressure. While, and Debye length ( ) decreased with pressure. The glow discharge is more stable with the Fe2O3-dust particles; all dust plasma parameters have lower values than those of the dust-free plasma.
The effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended
... Show MoreThis study produces an image of theoretical and experimental case of high loading stumbling condition for hip prosthesis. Model had been studied namely Charnley. This model was modeled with finite element method by using ANSYS software, the effect of changing the design parameters (head diameter, neck length, neck ratio, stem length) on Charnley design, for stumbling case as impact load where the load reach to (8.7* body weight) for impact duration of 0.005sec.An experimental rig had been constructed to test the hip model, this rig consist of a wood box with a smooth sliding shaft where a load of 1 pound is dropped from three heights.
The strain produced by this impact is measured by using rosette strain gauge connected to Wheatstone
The present study is considered the first on this sector of the Tigris River after 2003. It is designed for two aims, the first is to demonstrate the seasonal variations in physicochemical parameters of Tharthar-Tigris Canal and Tigris River; the second is to explain the possible effects of canal on some environmental properties in the Tigris River. Water samples were being collected monthly. Six sampling sites were selected, two on Tharthar Canal and four along the Tigris River, one before the confluence as a control site and the others downstream the confluence with the canal. For a period from January to December 2020, nineteen physicochemical parameters were investigated including air and water temperature, turbidity, electrical cond
... Show MoreThe Water Quality Index (WQI) is an important parameter in describing the water resources' suitability for human uses and is one of the most effective methods of describing water quality and indicative of assessing water quality and suitability for human utilization and the health of ecosystems. WQI of the Canadian Council of Ministers of the Environment (CCME) was used in the study to describe the Shatt al-Arab water quality in Basrah Southern Iraq, and its suitability for drinking use. The data for analyzing river water samples were adopted from five stations along the river every month during the years from 2014 to 2018 by the Iraqi Ministry of Environment, as it included the measurement of acidity function PH, Dissolved Oxyg
... Show MoreThis study aims to determine the petrophysical characteristics of the three wells in the Kifl Oilfield, central Iraq. The well logs were used to characterize hydrocarbon reservoirs to assess the hydrocarbon prospectivity, designate hydrocarbon and water-bearing zones, and determine the Nahr Umr Formation's petrophysical parameters. The Nahr Umr reservoir mainly consists of sandstone at the bottom and has an upper shale zone containing a small proportion of oil. The geophysical logs data from three oil wells include gamma-ray, resistivity, neutron, density, acoustic, and spontaneous potential logs. A gamma-ray log was employed for lithology differentiation, and a resistivity log was used to determine the response of distinct zones
... Show MoreThe characteristics of sulfur nanoparticles were studied by using atomic force microscope (AFM) analysis. The atomic force microscope (AFM) measurements showed that the average size of sulfur nanoparticles synthesized using thiosulfate sodium solution through the extract of cucurbita pepo extra was 93.62 nm. Protecting galvanized steel from corrosion in salt media was achieved by using sulfur nanoparticles in different temperatures. The obtained data of thermodynamic in the presence of sulfur nanoparticles referred to high value as compares to counterpart in the absence of sulfur nanoparticles, the high inhibition efficiency (%IE) and corrosion resistance were at high temperature, the corrosion rate or weig
... Show MoreIn this research, the effect of electrode material on the parameters of the produced DBD plasma was investigated. First, a non-thermal plasma was created by applying a 15 kV AC voltage between two electrodes and using a glass plate as a dielectric barrier in the design Dielectric Barrier Discharge (DBD) plasma system. The obtained plasma spectrum was analyzed using optical emission spectroscopy to calculate plasma parameters by the Boltzmann plot method. Electrodes made of copper, aluminium, and stainless steel were employed in this research. Electron temperature ( ) for copper, aluminium, and stainless steel was found to be (1.398 eV), (1.093 eV) and (1.009 eV), respectively.
Immuno-haematological genetic markers study was carried out to understand the genetic background variations among Kirkuk (Iraq) indigenous population. A cross-sectional study of 179 patients with thalassemia major was conducted in Kirkuk. A detailed review was undertaken to define the relationships between ethnic origins, phenotype and immuno-genetic markers uniformity in relation to genetic isolation and interethnic admixture. A total of 179 thalassemia major patients were subjected to analysis in the hereditary blood diseases centre, including (18(10.05 %)) of intermarriages between different ethnic groups origin, whereas the overall consanguinity marriage rate was estimated at (161 (89.9%)) including (63(35.1%)) for first cousi
... Show MoreTheoretical and experimental investigations of the transient heat transfer parameters of constant heat flux source subjected to water flowing in the downward direction in closed channel are conducted. The power increase transient is ensured by step change increase in the heat source power. The theoretical investigation involved a mathematical modeling for axially symmetric, simultaneously developing laminar water flow in a vertical annulus. The mathematical model is based on one dimensional downward flow. The boundary conditions of the studied case are based on adiabatic outer wall, while the inner wall is subjected to a constant heat flux. The heat & mass balance equation derived for specified element of bulk water within the annulu
... Show More