Background: Diabetes and periodontitis are considered as chronic diseases with a bidirectional relationship between them. This study aimed to determine and compare the severity of periodontal health status and salivary parameters in diabetic and non-diabetic patients with chronic periodontitis. Materials and Methods: Seventy participants were enrolled in this study. The subjects were divided into three groups: Group I: 25 patients had type 2 diabetes mellitus with chronic periodontitis, Group 2: 25 patients had chronic periodontitis and with no history of any systemic diseases, Group 3: 20 subjects had healthy periodontium and were systemically healthy. Unstimulated whole saliva was collected for measurement of salivary flow rate and pH. All periodontal parameters (plaque index, gingival index, probing pocket depth and clinical attachment level) were recorded for each patient. Results: The results showed that all clinical periodontal parameters were highest in group 1 in comparison with groups 2 and 3. Comparisons between pairs of groups revealed significant differences between groups 1 and 2 for plaque index, gingival index, probing pocket depth and clinical attachment level, and highly significant differences for plaque index, gingival index between groups 2 and 3, and between groups 1 and 3. The salivary flow rate and pH were lower in group 1 compared to groups 2 and 3. Inter-group comparisons of salivary parameters also revealed a significant difference between groups 1 and 2, with a non-significant difference between groups 2 and 3. Conclusion: Type 2 diabetic patients have significantly lower salivary flow rate, pH and present with advanced periodontal destruction compared to healthy patients. Key word: Saliva; periodontitis; diabetes mellitus.
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
abstract
the research discussed a stage of strategic management. The strategic of the evaluation of the proposed strategy through feedback is to ensure that it is implemented with the least possible variation. The research aims at evaluation a proposed strategy for the Ministry of Planning for the years 2018-2022 in line with the orientations of the state, taking into account the surrounding environmental conditions. It relies on scientific bases and steps to formulate the strategy The extent of the strategy suitability was tested through a set of statistical means and its objectivity was verified through a survey of a number of specialized experts who were selected in accordance with the principle
... Show MoreThe Small Indian Mongoose
The consumption of fossil fuels has caused many challenges, including environmental and climate damage, global warming, and rising energy costs, which has prompted seeking to substitute other alternative sources. The current study explored the microwave pyrolysis of Albizia branches to assess its potential to produce all forms of fuel (solid, liquid, gas), time savings, and effective thermal heat transfer. The impact of the critical parameters on the quantity and quality of the biofuel generation, including time, power levels, biomass weight, and particle size, were investigated. The results revealed that the best bio-oil production was 76% at a power level of 450 W and 20 g of biomass. Additionally, low power levels led to enhanced
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show More