Background: The present study was conducted to evaluate the effects of different bleaching methods on the shear bond strength of orthodontic Sapphire brackets bonded to human premolars teeth using light cured composite resin and to determine the predominant site of bond failure. Materials and Methods: Thirty freshly extracted human premolars were selected and randomly divided into three groups (10 per group). These groups are: control (unbleached) group, hydrogen peroxide group (HP) 37.5% ; which is the in- office bleaching method group, carbamide peroxide group (CP) 16%; which is the at- home bleaching method group. After bleaching process was performed, all the teeth stored in distilled water in a sealed container at room temperature for 24 hours before bonding was initiated, then orthodontic brackets were bonded with a light cure composite resin, stored in distilled water at room temperature for another 24 hours before debonding then the brackets de-bonded and tested for shear bond strength using an Instron universal testing machine. For adhesive remnant index (ARI) the enamel surface and bracket base of each tooth were inspected under magnifying lens (20X) of a stereomicroscope. Results and Conclusions: Non-statistically significant differences of shear bond strengths were found between the control group and the bleached groups, the dental bleaching in both methods did not affect the SBS of Sapphire brackets. The mode of failure was mostly between the adhesive and the enamel and the bond failure between the bracket base and the adhesive were also observed. Keywords: Shear bond strength, tooth bleaching agents, orthodontic brackets, dental bonding.
This work involves synthesis of some new heterocyclic compounds including 1, 3-diazetine. The new Schiff bases [VI] ad derived from 3-((5-hydrazinyl-4-phenyl-4H-1, 2, 4-triazol-3-yl) methyl)-1H-indole [V] which was synthesized by refluxing 5-((1H-indol-3-yl) methyl)-4-phenyl-4H-1, 2, 4-triazole-3-thiol [IV] with hydrazine hydrate in absolute ethanol and this amino compound [V] condensation with different aromatic aldehydes in absolute ethanol to yielded a new Schiff bases [VI] ad. N-acyl compounds [VII] ad were synthesized by addition reaction of acetyl chloride to imine group of Schiff bases in dry benzene. The new diazetine derivatives [VIII] ad synthesized by the reaction of N-acyl compounds [VII] ad with sodium azide in dimethylformamid
... Show Moreهدف البحث إلى التعرف على مستوى الثقافة الغذائية الرياضية لدى عدائي مسافات ركض (400 و800) و(400) متر حواجز الشباب، والتعرف على العلاقة وإسهام وأثر الثقافة الغذائية الرياضية ببعض المؤشرات البيوكيميائية لدى عدائي مسافات ركض (400 و800) و(400) متر حواجز الشباب، أعتمد المنهج الوصفي بأسلوب العلاقات الإرتباطية، و تمثلت حدود مجتمع البحث بالعدائين الشباب لفعاليات ركض (400 و800) و(400) متر حواجز، يمثلون لاعبي الأندية العراقية الب
... Show MoreThis work represents the preparation of the starting material, 3-chloro-2-oxo-1,4-dithiacyclohexane (S) using a new method. This material was reacted with, 4-phenylthiosemicarbazide to give (H3NS3) as a tetradentate ligand H3L. New complex of rhenium (V) with this ligand of the formula [ReO(L)] was prepared. New complexes of the general formula [M(HL)] of this ligand when reacted with some metal ions where: M = Ni(II), Cu(II), Cd(II), Zn(II), Hg(II) have been reported. The ligand and the complexes were characterized by infrared, ultraviolet–visible, mass, 1H nuclear magnetic resonance and atomic absorption spectroscopic techniques and by (HPLC), elemental analysis, and electrical conductivity. The proposed structure for H3L with Re (V) i
... Show MoreThe compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created comp
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structu
... Show MoreThe complexes of the 2-hydroxy-4-Nitro phenyl piperonalidene with metal ions Cr(III), Ni(II), Pt(IV) and Zn(II) were prepared in ethanolic solution. These complexes were characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was study following the molar ratio method. From the spectral studies, monomer structures proposed for the nickel (II) and Zinc (II) complexes while dimeric structures for the chromium (III) and platinum (IV) were proposed. Octahedral geometry was suggested for all prepared complexes except zinc (II) has tetrahedral geometry, Structural geometries of these compounds were also suggested in gas phase by using
... Show MoreSilver nanoparticles synthesized by different species
Structure type and disorder have become important questions in catalyst design, with the most active catalysts often noted to be “disordered” or “amorphous” in nature. To quantify the effects of disorder and structure type systematically, a test set of manganese(III,IV) oxides was developed and their reactivity as oxidants and catalysts tested against three substrates: methylene blue, hydrogen peroxide, and water. We find that disorder destabilizes the materialsthermodynamically, making them stronger chemical oxidantsbut not necessarily better catalysts. For the disproportionation of H2O2 and the oxidative decomposition of methylene blue, MnOx-mediated direct oxidation competes with catalytically mediated oxidation, making the most
... Show More