Background: A comparism study for management of deep seated small brain tumors less than 4 cm in the 3 diameters between cases managed by Brain lab navigator and those without it.
Patients and methods: We took 20 patients from the retrospecture data before the use of Navigator in our country compared with the 20 patients managed after the use of navigator in our hospital (specialized surgical hospital) in the neuro-surgical. Unit since 2002 till now. From 1/8/2002 till 31/12/2007 the study included the type of tumor & surgery & the result of surgery & time & complications ((morbidity & mortality)).
Results: There was a significant increase of the safety of surgery by using the navigator including morbidity & mortality. But it was a time consuming procedure.
Conclusion: The brain lab navigator is very useful safe device in the surgical management of deepseated small diameter less than 4mm. brain tumors.
Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect
... Show MoreThe Specific activity of extracellular superoxide dismutase (EC-SOD) was measured in healthy persons and in patients with benign and malignant brain tumors. The results show decrease of the EC-SOD specific activity in sera of patients with benign and malignant brain tumors in comparison to that of control group.This study concentrated on studying the changes that occur in sera EC-SOD activity of patients with benign and malignant brain tumors, in comparison to that of normal individuals. The result also revealed that this isoenzyme is present in many different molecular weights forms (as judged by polyacrylamide gel electrophoresis), some of these with no enzymatic activity. Conversion among these forms occurs in the malignant sera
In this work, watershed transform method was implemented to detect and extract tumors and abnormalities in MRI brain skull stripped images. An adaptive technique has been proposed to improve the performance of this method.Watershed transform algorithm based on clustering techniques: K-Means and FCM were implemented to reduce the oversegmentation problem. The K-Means and FCM clustered images were utilized as input images to the watershed algorithm as well as of the original image. The relative surface area of the extracted tumor region was calculated for each application. The results showed that watershed trnsform algorithm succeedeed to detect and extract the brain tumor regions very well according to the consult of a specialist doctor a
... Show MoreThe aim of the current study is to in evaluate the role of SOD activity in the previously reported oxidative stress in our laboratory(1), in the patients with different brain tumors. SOD activity was assayed according to riboflavin/NBT method and its specific activity was calculated in patients with benign and malignant brain tumors and control. Moreover the specific activity was compared in these samples according to gender and the occurrence of disease.Non significant elevation (P > 0.05) in SOD specific activity was observed in tissue of malignant tumors in comparison to that of in benign brain tumors. While a highly significant decrease (P < 0.001) of the specific activity was found in sera of malignant patients group in comparison to t
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
AIM: To evaluate the short-term effectiveness of Gamma knife radiosurgery as a modality of treatment of brain arteriovenous malformation. METHODS: Sixty-three patients with arteriovenous brain malformations underwent Gamma knife radiosurgery included in this prospective study between April 2017 and September 2018 with clinical and radiological with MRI follow up was done at three months and six months post-Gamma knife radiosurgery. By the end of the 12th-month post-Gamma knife radiosurgery, the patients were re-evaluated using digital subtraction angiography co-registered with M.R.I. During the 12 months follow up, CT scan or MRI was done at any time if any one of the patients᾽ condition deteriorated or developed signs and s
... Show MoreAlways MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean. The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.<
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More