Preferred Language
Articles
/
iqjmc-1033
CT Image Segmentation Based on clustering Methods.
...Show More Authors

Background: image processing of medical images is major method to increase reliability of cancer diagnosis.
Methods: The proposed system proceeded into two stages: First, enhancement stage which was performed using of median filter to reduce the noise and artifacts that present in a CT image of a human lung with a cancer, Second: implementation of k-means clustering algorithm.
Results: the result image of k-means algorithm compared with the image resulted from implementation of fuzzy c-means (FCM) algorithm.
Conclusion: We found that the time required for k-means algorithm implementation is less than that of FCM algorithm.MATLAB package (version 7.3) was used in writing the programming code of our work.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Efficient Hybrid DCT-Wiener Algorithm Based Deep Learning Approach For Semantic Shape Segmentation
...Show More Authors

    Semantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Image encryption algorithm based on the density and 6D logistic map
...Show More Authors

One of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera

... Show More
View Publication
Scopus (16)
Crossref (8)
Scopus Crossref
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
Quantitative Analysis based on Supervised Classification of Medical Image Fusion Techniques
...Show More Authors

Fusion can be described as the process of integrating information resulting from the collection of two or more images from different sources to form a single integrated image. This image will be more productive, informative, descriptive and qualitative as compared to original input images or individual images. Fusion technology in medical images is useful for the purpose of diagnosing disease and robot surgery for physicians. This paper describes different techniques for the fusion of medical images and their quality studies based on quantitative statistical analysis by studying the statistical characteristics of the image targets in the region of the edges and studying the differences between the classes in the image and the calculation

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Iraqi Journal Of Science
Efficient text in image hiding method based on LSB method principle
...Show More Authors

The steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere

... Show More
View Publication
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Image Compression based on Adaptive Polynomial Coding of Hard & Soft Thresholding
...Show More Authors

In this paper, an adaptive polynomial compression technique is introduced of hard and soft thresholding of transformed residual image that efficiently exploited both the spatial and frequency domains, where the technique starts by applying the polynomial coding in the spatial domain and then followed by the frequency domain of discrete wavelet transform (DWT) that utilized to decompose the residual image of hard and soft thresholding base. The results showed the improvement of adaptive techniques compared to the traditional polynomial coding technique.

View Publication Preview PDF
Publication Date
Sun Dec 01 2002
Journal Name
Iraqi Journal Of Physics
New DCT-Based Image Hiding Technique
...Show More Authors

A new technique for embedding image data into another BMP image data is presented. The image data to be embedded is referred to as signature image, while the image into which the signature image is embedded is referred as host image. The host and the signature images are first partitioned into 8x8 blocks, discrete cosine transformed “DCT”, only significant coefficients are retained, the retained coefficients then inserted in the transformed block in a forward and backward zigzag scan direction. The result then inversely transformed and presented as a BMP image file. The peak signal-to-noise ratio (PSNR) is exploited to evaluate the objective visual quality of the host image compared with the original image.

View Publication Preview PDF
Publication Date
Wed Sep 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Radial Based Neural Network for Clustering and Routing Optimal Path in Wireless Network
...Show More Authors

Several methods have been developed for routing problem in MANETs wireless network, because it considered very important problem in this network ,we suggested proposed method based on modified radial basis function networks RBFN and Kmean++ algorithm. The modification in RBFN for routing operation in order to find the optimal path between source and destination in MANETs clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. The re

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 02 2023
Journal Name
East European Journal Of Physics
Evaluation of the Influence of Body Mass Index and Signal-to-Noise Ratio on the PET/CT Image Quality in Iraqi Patients with Liver Cancer
...Show More Authors

Image quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Sep 03 2023
Journal Name
Iraqi Journal Of Computers, Communications, Control & Systems Engineering (ijccce)
Efficient Iris Image Recognition System Based on Machine Learning Approach
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023

View Publication