Preferred Language
Articles
/
ijs-9952
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning models for a variety of tasks under the control of a unified architecture for each proposed model.

View Publication Preview PDF
Quick Preview PDF