In this study, we report a statistical study for the relationship between coronal mass ejections (CMEs) and sunspot number (SSN) that were registered during the period 2008-2017 for the solar cycle 24. SSN was extracted from Sunspot Index and Long-term Solar Observations (SILSO), while CMEs number from observations made by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory mission (SOHO). The present period was adopted to conduct the investigation and obtain the mutual correlation between SSN and CMEs. The relationship between CME, the speed of halo CME, and partial halo CMEs for solar cycle 24 were studied. The analysis of results indicated that the average speed of halo CMEs is almost faster than the average speed of partial halo CMEs.Test results of the annual correlation between SSN and CMEs are simple and can be represented by a linear regression equation. Finally, Gaussian fit as a function of time was performed to compare behavior of numbers the CME and SSN with the years and the results show that the center of the peaks agrees with 2014.
A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).
Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.