Faces blurring is one of the important complex processes that is considered one of the advanced computer vision fields. The face blurring processes generally have two main steps to be done. The first step has detected the faces that appear in the frames while the second step is tracking the detected faces which based on the information extracted during the detection step. In the proposed method, an image is captured by the camera in real time, then the Viola Jones algorithm used for the purpose of detecting multiple faces in the captured image and for the purpose of reducing the time consumed to handle the entire captured image, the image background is removed and only the motion areas are processed. After detecting the faces, the Color-Space algorithm is used to tracks the detected faces depending on the color of the face and to check the differences between the faces the Template Matching algorithm was used to reduce the processes time. Finally, the
detected faces as well as the faces that were tracked based on their color were obscured by the use of the Gaussian filter. The achieved accuracy for a single face and dynamic background are about 82.8% and 76.3% respectively.
This study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj
... Show MoreThe multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreFacial identification is one of the biometrical approaches implemented for identifying any facial image with the use of the basic properties of that face. In this paper we proposes a new improved approach for face detection based on coding eyes by using Open CV's Viola-Jones algorithm which removes the falsely detected faces depending on coding eyes. The Haar training module in Open CV is an implementation of the Viola-Jones framework, the training algorithm takes as input a training group of positive and negative images, and generates strong features in the format of an XML file which is capable of subsequently being utilized for detecting the wanted face and eyes in images, the integral image is used to speed up Haar-like features calc
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreComputer vision is an emerging area with a huge number of applications. Identification of the fingertip is one of the major parts of those areas. Augmented reality and virtual reality are the most recent technological advancements that use fingertip identification. The interaction between computers and humans can be performed easily by this technique. Virtual reality, robotics, smart gaming are the main application domains of these fingertip detection techniques. Gesture recognition is one of the most fascinating fields of fingertip detection. Gestures are the easiest and productive methods of communication with regard to collaboration with the computer. This analysis examines the different studies done in the field of
... Show MoreFeatures is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreThis paper presents a new RGB image encryption scheme using multi chaotic maps. Encrypting an image is performed via chaotic maps to confirm the properties of secure cipher namely confusion and diffusion are satisfied. Also, the key sequence for encrypting an image is generated using a combination of 1D logistic and Sine chaotic maps. Experimental results and the compassion results indicate that the suggested scheme provides high security against several types of attack, large secret keyspace and highly sensitive.
This study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of different sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service. Then, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. This provides a database
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show More