Keratin is a fibrous, insoluble structural protein that is highly cross-linked with hydrophobic, hydrogen, and disulfide bonds. Keratinases are enzymes that belong to the category of serine hydrolases that are capable of breaking down keratin. The results of the determination of the better fermentation system showed that the production of keratinase from local A.terreus A13 isolate by submerged fermentation (SmF) system was the best system to give the highest specific activity (113.4 U/mg) of keratinase compared with solid-state fermentation (SSF). The optimum conditions for keratinase production by SmF, were determined via cultivation conditions, including carbon source, nitrogen source, temperature, pH of the medium, and time of incubation were optimized to enhance the production of total keratinase production in a culture of A.terreus A13 with incubator shaker. The highest product of total keratinase was achieved in feather broth with 2 % sucrose, and 0.5 % soya bean, with a pH of 5.5 at 28 °C for 8 days. Separation and purification of keratinase from a local isolate of A.terreus A13 was done by precipitating with 0-75 % saturated ammonium sulfate, then by ion-exchange chromatography on DEAE-Cellulose column and sephadex G-150 gel. Partially purified keratinase gave an activity of 5.1 U/ml, protein concentration of 0.004 mg/ml, and specific activity of 1275 U/mg with purification fold of 4.96 and 49 % as yield. The aim of the present study was to optimize the production of keratinase from A. terreus A13, cultivated using optimum conditions, and its use for the biodegradation of feathers.
Endoglucanase produced from Aspergillus flavus was purified by several steps including precipitation with 25 % ammonium sulphate followed by Ion –exchange chromatography, the obtained specific activity was 377.35 U/ mg protein, with a yield of 51.32 % .This step was followed by gel filtration chromatography (Sepharose -6B), when a value of specific activity was 400 U/ mg protein, with a yield of 48 %. Certain properties of this purified enzyme were investigated, the optimum pH of activity was 7 and the pH of its stability was 4.5, while the temperature stability was 40 °C for 60 min. The enzyme retained 100% of its original activity after incubation at 40 °C for 60 min; the optimum temperature for enzyme activity was 40 °C.
Lovastatin is one of the most important compounds that is produced from some filamentous fungi, being employed in the reduction of hypocholesterolemia. The results of screening, after the collection of seventy-three local fungal isolates from different areas, demonstrated that the local isolate Aspergillus terreus A50 was the best isolate for lovastatin production, with a concentration of 12.66 µg/ml, through the submerged fermentation. Lovastatin produced from A. terreus A50 showed antimicrobial activities against a Candida albicans isolate. Solid state fermentation (SSF) was the best system to produce the highest yield of lovastatin by A. terreus A50 as compared to the submerged fermentation (SmF)
... Show MoreTwenty isolates of Serratia marcescens were isolated from inflammation of the urinary tract (UTI)., These isolates were found to produce hemolysin as indicated by blood agar plates in which the hemolysis of red blood cell indicate a positive result. Isolates were selected according to their hemolysis activity by measuring absorbance of hemoglobin at 405 nm that released from red blood cell. Hemolysin was completely purified using 50-75% saturation of ammonium sulphate followed by ion exchange chromatography with DEAE-cellulose then gel filtration chromatography by sepharose 4B. Accordingly molecular weight for the purified toxin was estimated as 45 KD.
Beta-lactamase was purified from local isolate Klebsiella pneumonia by several steps included precipitation with ammonium sulphate at 20-40% saturation, DEAE- ion exchange chromatography and gel filtration on Sephacryl S-200 column. The obtained purification fold and recovery were 32.66; 47.04% respectively. The characterization of the purified beta-lactamase showed that the molecular weight was about 4000 daltons as determined by gel filtration.Purified enzyme had an optimal pH of 7 for activity and an optimal stability between pH 6.5-7.5, results shows that the optimal temperature appear to be 35 ? C .During storage the enzyme retained 72% at -20 ? C and retained 25% of the activity at the same period at 4 ? C.
Soil samples from fields cultivated with barley and wheat in addition to samples
from spoiled orange and apple fruits and carrot roots were collected with the aim to
isolate cellulase producing bacterial strains. Bacterial isolates obtained from these
samples were grown on a selective medium containing carboxymethyl cellulose
(CMC) as a sole source for carbon and energy. Results showed that nine isolates out
of fifty were able to produce cellulase.The specific activity of cellulase in culture
filtrate of the most efficient isolate was 1.601 u/mg protein.This isolate was
identified according to its morphological characteristics and biochemical tests, and
then by using Api 20-E and VITEK-II identification systems an
Forty one isolates of genus Proteus were collected from 140 clinical specimens such as urine, stool, wound, burn, and ear swabs from patients of both sex. These isolates were identified to three Proteus spp. P. mirabilis, P. vulgaris and P. penneri .The ability of these bacteria to produce L-asparaginase II by using semi quantitative and quantitative methods was determined. P. vulgaris Pv.U.92 was distinguished for high level of L-asparaginase II production with specific activity 1.97 U/mg. Optimum conditions for enzyme production were determined; D medium with 0.3% of L-asparagine at pH 7.5 with temperature degree 35°C for incubation. Ultrasonication was used to destroy the P. vulgaris Pv.U.92 cells then ASNase II was extracted and pu
... Show MoreSpecific microorganisms can produce bacterial nanocellulose (BNC), with acetic acid bacteria (AAB) being the most active producer. The family Acetobacteraceae includes the obligate aerobic, motile acetic acid bacteria. The BNC has attracted a lot of interest across a wide range of industries, including pharmaceuticals, due to its flexible characteristics, properties, and advantages. The present study was conducted to purify and characterize BNC produced from AAB isolated from apple vinegar. Bacterial nanocellulose was synthesized using a natural date palm liquid medium at pH 6 at 30°C for 8–10 days. The bacterial cellulose produced was then purified using a technique involving 0.1 M sodium hydroxide. To ascertain the surface mor
... Show MoreSteps were taken to obtain the Kojic acid crystals from local fungal isolation A. flavus WJF81 by separating the fermentation products from the fungus mycelium from the production plant at the centrifuge at a speed of 5000 cycles for 10 minutes. The extraction was followed by ethyl acetate then supernatant concentrate by using rotary evaporator, and dried with heat oven 37ºC. Long, yellowish, pristine acid crystals were obtained that examined the optical microscope with a magnification force of 10x and 40x. The melting point of kojic acid was determined between 152.9-153.5 °C Results of the diagnosis of Kojic acid by applying High pressure liquid chromatography HPLC technique showed that the acid was at one peak, which was close to the
... Show More