Preferred Language
Articles
/
ijs-8321
Investigating the Antioxidant and Apoptosis Inducing Effects of Biologically Synthesized Silver Nanoparticles Against Lymphoma Cells in Vitro
...Show More Authors

     The current study aimed to synthesize silver nanoparticles (Ag NPs) in a safe and eco-friendly biological method using green tea extract, characterize them using UV-vis spectroscopy, FTIR, XRD, FESEM, and AFM tools, then investigate their antioxidant potentials against DPPH and their cytotoxicity toward lymphoma cells using MTT and ethidium bromide/propidium iodide dual staining assays, and their genotoxic capacities by assessing their effects on the gene expression of p53, caspase3, bcl-2, and bax genes by qPCR and DNA fragmentation.  Results confirmed the synthesis of silver nanoparticles; the UV-vis results showed a peak of absorbance at 414 nm; FTIR analysis showed absorbance belonging to the functional groups of green tea; XRD assay results confirmed the crystallinity of Ag NPs; and AFM revealed a mean diameter of around 24.37 nm. Finally, FESEM showed that the shape of Ag NPs was that of spherical aggregated nanoparticles. The synthesized nanoparticles showed antioxidant activity and cytotoxic effects against lymphoma cells, with an IC50 =  1.138 μg/ml. Cell staining results showed alternations in the shape of treated cells due to apoptosis. Ag NPs affected gene expression as they increased proapoptotic genes p53, caspase3, and bax by 3.3, 2, and 4.25fold, respectively, while decreasing antiapoptotic gene expression bcl-2 by 0.59fold. We concluded that the biological way is an efficient way to synthesize silver nanoparticles, and the synthesized NPs have antioxidant potential and are cytotoxic and genotoxic toward lymphoma cells; thus, they may be utilized in related biomedical applications.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 02 2019
Journal Name
Baghdad Science Journal
Stimulation of Macrophage Cells Against Cutaneous Leishmaniasis Using Silver Nanoparticles
...Show More Authors

Cutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production.  This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Nano Biomedicine And Engineering
Effects of Silver Nanoparticles Synthesized from Phenolic Extract of <i>Agaricus bisporus</i> Against Pathogenic Bacteria and Yeasts
...Show More Authors

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sun Oct 16 2022
Journal Name
Arab Journal For Plant Protection
Effects of Pseudomonas fluorescens, Bacillus thuringiensis tenebrionis Isolates and Biologically Synthesized Silver Nanoparticles on Cellulase Enzyme Activity in Workers' Digestive System of the Termite Microcerotermes diversus Silv
...Show More Authors

Kamel, S.H., R.F. Al-Jassani and H.A. Al-Shammari. 2022. Effects of Pseudomonas fluorescens, Bacillus thuringiensis tenebrionis Isolates and Biologically Synthesized Silver Nanoparticles on Cellulase Enzyme Activity in Workers' Digestive System of the Termite Microcerotermes diversus Silv. Arab Journal of Plant Protection, 40(4): 315-324. https://doi.org/10.22268/AJPP-40.4.315324 The purpose of this study was to investigate the effect of different bacterial isolates of P. fluorescens and B. t. tenebrionis and silver nanoparticles on the activity of the cellulase enzyme in termites' middle digestive system and its role in glucose release by treating cellulose media with bacterial strains and nanoparticles. Ultraviolet spectroscopy re

... Show More
View Publication
Scopus
Publication Date
Sun Jan 01 2023
Journal Name
Plasma Medicine
Thermal Effect of Laser on Silver Nanoparticles Synthesized by the Cold Plasma Method on Cancer Cells
...Show More Authors

In this study, silver nanoparticles (AgNPs) were synthesized using a cold plasma technique and a plasma jet. They were then used to explore how photothermal treatment may be used to treat lung cancer (A549) and normal cells (REF) <i>in vitro</i>. The anti-proliferative activity of these nanoparticles was studied after A549 cells were treated with (AgNPs) at various concentrations (100&#37;, 50&#37;, or 25&#37;) and exposure times (6 or 8 min) of laser after 1 h or 24 h from exposed AgNPs. The highest growth inhibition for cancer cells is (75&#37;) at (AgNPs) concentration (100&#37;) and the period of exposure to the laser is (8 min). Particle size for the prepared samples varied according to the diameter o

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 19 2022
Journal Name
Iraqi Journal Of Science
Evaluation of Silver Nanoparticles (Ag NPs) Activity Against the Viability of Leishmania tropica Promastigotes and Amastigotes In Vitro
...Show More Authors

Leishmaniasis is a disease caused by a protozoan parasite of the genus Leishmania. It is transmitted by the bite of sandfly (Subfamily Phlebotominae). Limited drugs are available for the treatment of leishmaniasis, and the general drug (pentostam) have many side effect on patients. Therefore, there is an urgent need for another drugs for the treatment of leishmaniasis.
This study aimed to develop new type of antileishmanial agents instead of classical drug (pentostam) and investigated the effectiveness of silver nanoparticles (Ag NPs) on Leishmania tropica parasites in both phases promastigote and amastigote in comparision to pentostam in in vitro condition.
This study showed the effects of Ag NPs in comparision to pentostam with d

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 16 2019
Journal Name
Journal Of Research In Medical And Dental Science
Evaluation of the Antibacterial Efficacy of Silver Nanoparticles as an Irrigant against Enterococcus faecalis In vitro Study
...Show More Authors

Background: Successful root canal therapy depends on thorough chemo mechanical debridement of pulpal tissue, dentin debris and infective microorganisms. Objective: This study aimed to investigate the antibacterial effect of silver nanoparticles, sodium hypochlorite and chlorhexidine in reducing the bacterial infection of the root canals. Materials and Methods: The root canals of 55 single-rooted teeth were cleaned, shaped, and sterilized. All the teeth samples were inoculated with Enterococcus faecalis and incubated at 37°C for 2 weeks. Then, the teeth were divided into four groups. Group I (n=15): 100 ppm silver nanoparticles, Group II (n=15): 2.5 sodium hypochlorite, Group III (n=15): 2% chlorhexidine, IV (n=10): Normal saline as a contr

... Show More
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
In Vitro Assessment of the Antioxidant and Antitumor Potentials of Biogenic Silver Nanoparticle
...Show More Authors

Silver nanoparticles (AgNPs) were biosynthesized using the cell free supernatant of putative probiotic Lactobacillus paracasei A26. Several biological activities of biogenic AgNPs were investigated in respect to in vitro anti-oxidant and anti-tumor potentials.  Anti-oxidant potentials were screened in terms of free radical scavenging activity against two free radicals, 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and resazurin dye. AgNPs exhibited a potent scavenging activity against resazurin dye (91±0.046%) with an EC50 concentration of 146.823 µg/ml, while scavenging of DPPH was significantly (P≤0.05) reduced to 72.330±0.114% using a higher EC50 concentration of 176.12 µg/ml. The

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Tue Jul 28 2020
Journal Name
Iraqi Journal Of Science
Antibacterial Activity of Silver Nanoparticles Synthesized from Plant Latex
...Show More Authors

     Nanoparticles produced by plants are preferred in the medical field for its safe and unpolluted product; it is also accepted as an ecofriendly, non-expensive, and non-toxic nanomaterial. In this study, silver nitrate was successfully used to produce silver nanoparticles (AgNPs) by the use extractsof 4 different latex-producing plants which belong to 2 families (Moraceae and Euphorbiaceae). The synthesis was proved by Atomic Force Microscopy (AFM).The sizes of the AgNP grains were estimated by Granularity Cumulating Distribution (GCD). The results revealed the production of AgNPs in different sizes of 103 and 82 nm using the Moraceae family and 77 and74nm using the Euphorbiaceae

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (5)
Scopus Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Sumer 1
Biologically synthesized Copper Nanoparticles from S. epidermidis on resistant S. aureus and cytotoxic assay
...Show More Authors

The risk of significant concern is resistance to antibiotics for public health. The alternative treatment of metallic nanoparticles (NPs), such as heavy metals, effects on antibiotic resistance bacteria with different types of antibiotics of - impossible to treat using noval eco-friendly synthesis technique nanoparticles copper oxide (CuO NPs) preparation from S. epidermidis showed remarkable antimicrobial activity against S.aureus Minimum inhibitory concentra range (16,32,64,256,512) µg/ml via well diffusion method in vitro, discover those concentrations effected in those bacteria and the best concentration is 64 µg/ml, characterization CuO NPs to prove this included atomic force microscope, UV, X-ray Diffraction and TEM, and ant

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Antibacterial Activity of Silver Nanoparticles Synthesized by Aqueous Extract of Carthamus oxycantha M.Bieb. Against Antibiotics Resistant Bacteria
...Show More Authors

Antibiotics resistant bacteria have become a global problem as a result of the unprogrammed use of antibiotics, resulting in bacterial strains resistant to many antibiotics, or to all available antibiotics. Plants are a good source of primary and secondary metabolites that have a major role in reducing silver nitrate to silver nanoparticles (AgNPs). The production of these nanoparticles were carried out by using aqueous extract of Carthamus oxycantha M.Bieb. This can be verified by color change of the reaction solution from yellow to dark brown because of the excitation of the surface plasmon resonance. AgNPs were characterized by UV-Vis spectroscopy, where they recorded the peak at 420 nm. Fourier Transformation-infrared (FTIR)

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref