Analysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval ( are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medical images using GA-based feature selection to find feature vectors. Images from the datasets and images from the query are recognized using a correlation coefficient. The third stage of the proposed method used a diverse density algorithm feedback technique to enhance the performance of the . Images of breast cancer, brain cancer, lung cancer, thyroid cancer, etc., may be retrieved using the suggested procedure. By using a feature selection algorithm based on GA to determine the best subset of features, the challenge of system dimensionality is reduced. The suggested method has greater accuracy in precision, recall, and F-score than the other techniques.